
7AD-P37 955 SOFTWARE QUAfLITY
MEASUREMENT FOR DISTRIBUT ED SYSTEMS

1/2
VOLUME i<U) BOEING HEROSFACE CO SEATTLE WA

U CLR ~T PBOW.EN ETAL. JL 8- ADCT---7-O-

UNCLASSIFIED F30602-0C30 F/G 9/ 5

- 11 i1166

LA 110
V. . -

E1.2 132JM

MICROCOPY RESOLUTION TEST CHART
119"OAL BUREAU OF STANDARDS- 1963-A

r%

--

_ __ _ _ _ -. . . I_
:..-- ., ,.. . . , ,. , ,. .. , -,.. ,,. ... ,.,

RADC-TR-03.175. Vol I (of three)
Pnal Technical Report

j~July 19S3

- SOFTWARE OUALITY MEASUREMENT FOR
" DISTRIBUTED SYSTEMS

Boeing Aerospace Company

Thomas P. Rowan. Jonathan V. Post, Jultien hal. P. Edward Presson
and Robert L. Schmidt

M FOR PUB.IC RELEASk DITRIBUTION ULIITE DTIC
S ELECTED

4FEB
15 984D

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, NY 13441

UHC FILE COPY 84 02 15 013

a..-, ~

* . . L. e . , , -. 4 -C=....____ . - - •

This report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS).. At NTIS it witi
be releasable to the general public, including foreign nations.

RADC-TR-83-175, Vol I (of three) has been reviewed and is approved for
publication.

APPROVED:

4.-' JOSEPH P. CAVANO
Project Engineer

! Acting Chief, Command &Control Division

.-. FOR THE COMMANDER:

%.
.OH P. HUPRVED

4~~~~ctn Acting Chiefs CoOadffoleiiso

-S. If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee is no longer employed by your organization, please notify
RADC (COEE), Griffiss AFB NY 13441. This will assist us in maintaining a current
mailing list.

Do not return copies of this report unless contractual obligations or notices on a
" specific document requires that it be returned.

.m
qfo"

SP'

o".."-.2 /.."..." .'_."." ".o;'''%,,. '', "', %,," ""'.- ,)'.242' , .i 'S. ,-

UNCLASSFiTRDn
SECURITY CLASSIFICATION OF THIS PAGE (Whe Detaferesi "..."

REPORT DOCUMENT&TION PAGE BEFO WSTRUCTIOM"

1. REPORT NUM8 . 0 ACCESSION NO. S. RECIPIENT*S CATALOG NuMBER

-3-1- ValT Cf tm)3 7 9-55__________

4. TITLE (and Mbhi40d) S. TYPE OF REPORTS PERIOD COVERED
Final Technical Report

SOFTWARE QUALITY MEASUREMENT FOR FnlTcnclRpr
October 80 - March 83DISTRIBUTED SYSTN6 S. PERFORMING O1G. REPORT NUMBER

7. AUTHOR() S. CONTRACT OR GRANT NUMbER(.)
Thomas P. Bowen P. Edward Presson F

. Jonathan V. Post Robert L. SchmdtF30602-80-C-0330
Juitien Tsai TAS

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. POGRAM ELEMENT. PROJECT. TASK "

Boeing Aerospace Company
A6I2 A & ORK UNIT NUMBERS

PO Box 3999 55812030
I.,,ttl WA QR174
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

July 1983
Rome Air Development Center (COEE) IS. NUMBER OF PAGES

Griffiss AFB NY 1344113
14. MONITORING AGENCY NAME A ADDRESS(, digee,.-- s-- Contling 0,i..c) IS. SECURITY CLASS. (o. this report)

UNCLASSIFIED
Same IS. DECk ASSII I CATION/ DOWN GRADING

N/A scM DULE

1'. DISTRIBUTION STATEMENT (of tihls Repart)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of tie abtract enteed In Blek 2. It dhcwuten Im Report)

Same

IS. SUPPLEMENTARY NOTES

j RADC Project Engineer: Joseph P. Cavano (COEE)

IS. KEY WORDS (Ccmeinu an reveree side It nees8 r NW idmlael by blek ftembeir)

Software Quality Software Expandability
Software Metrics
Software Measurement
Software Survivability

20. ABSTRACT (Con lmie on revereoe de I neceeay d Identp r blek m=bA)

Software metrics (or measurements) which are used to indicate and predict
levels of software quality were extended from previous research to include
considerations for distributed computing systems. Aspects of the products
of software life-cycle activities which could affect the quality levels of
software, and metrics to measure them, were identified. Two new quality
factors, survivability and expandability, were validated. A Guidebook for
Software Quality Measurement was produced to aid in setting quality goals, - j ,

DI j* 1473 co,,,Ou O I, Nov so.is oeO.oED IMOO UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When DMa Entered)

%-.. %

%~*'

MuCLAS8IFTED
WGv 1PAw" OP 1wS PEm a. a

applying mtric meurmimte, and mak4ng quality level assesummts. Nor
9., intuice for Interoperabilty and reusability were also Included In the

guidebook.

DTIC
ELECTE

FES 15198401

Aoossion For d
NTIS GRA&I
DTIC TAB 13
Unannounced 01
Justification

By
Distribution

Avallability Codes
va-i ad/or

Dist Speolel

UNCLA.SSIPIED
9sCURITY CL"SaIPICATION O op- 0n PAGEt~he Dae MS~e.

/~ %

PREFACE

This document is the final technical report (CDRL A003) for the Quality Metrics for
Distributed Systems contract, number F30602-3O-C-0330. The contract was performed
for Rome Air Development Center (RADC) to provide methodology and technical

guidance on software quality metrics to Air Force Software acquisitions managers.

This report consists of three volumes as follows:

Volume I Software Quality Measurement for Distributed Systems - Final Report
Volume 11 Guidebook for Software Quality Measurement
Volume III Distributed Computing Systems: Impact on Software Quality

The objective of this contract was to conduct exploratory development of techniques to
measure system quality with a perspective on both software and hardware from a life
cycle viewpoint. The effort was expected to develop and validate metrics for software
quality on networked computers and distributed systems; i.e., systems whose functions
may be tightly distributed over microprocessors or specialized devices such as data base
machines. At the same time, the effects hardware has on software was to be studied, as
well as the trade-off s between hardware, firmware, and software. The results of this
research are reported in V~kAme-L- ftw k' w~ S ("

Volume II describes the application of quality metrics to distributed systems and provides

guidance for AF acquisition managers. The guidebook provides guidance for specifying
and measuring the desired level of quality in a software product.

Volume III describes a qualitative study of distributed system characteristics, reasons for
selection, design strategies, topologies, scenarios, and trade-off s. These analyses led to
the changes in the Framework shown in Volume 1, and to the validation of models.

4. 2.r V Ir p ap ,p-7 - --.

TABLE OF CONTENTS
Page

SECTION

1.0 EXECUTIVE SUMMARY 1-1

1.1 OBJECTIVES OF RESEARCH 1-1

1.2 BACKGROUND 1-1

1.3 TECHNICAL APPROACH 1-.

1.4 SUMMARY OF ACCOMPLISHMENTS 1-9

1.4.1 Framework Changes 1-10
1.4.2 Design Guidelines and Tradeoff Analyses 1-11

1.4.3 Quality Metrics Guidebook 1-11
1.4.4 Data Collection, Analyses, and Validation 1-12

1.5 CONCLUSIONS 1-12

2.0 SOFTWARE QUALITY FRAMEWORK ENHANCEMENTS 2-1
2.1 INITIAL FRAMEWORK 2-1

2.1.1 Quality Model 2-1

2.1.2 Framework Elements 2-1

2.2 FRAMEWORK ENHANCEMENTS 2-3
2.2.1 Quantitative Change Summary 2-3
2.2.2 Metric Categorization 2-8

2.2.3 Life Cycle Phases 2-8
2.2.4 Worksheet Categories 2-8

2.3 TRANSITION TO NEW FRAMEWORK: SUMMARY OF VOLUME II1 2-12

3.0 DISTRIBUTED SYSTEM QUALITY METRICS FRAMEWORK 3-1
3.1 SOFTWARE QUALITY FRAMEWORK 3-3

3.1.1 Software Quality Factors 3-3

3.1.2 Software Quality Criteria 3-10

-ii-

9. 9- .

TABLE OF CONTENTS (ContinueD

Page

3.1.3 Software Quality Metrics 3-19

3.2 SYSTEM QUALITY FRAMEWORK 3-23

3.2.1 System Quality Factors 3-23
3.2.2 System Quality Criteria 3-26

3.2.3 System Quality and Software Quality Correspondence 3-26

4.0 TRANSITIONAL STUDY 4-1

4.1 FACTORS STUDIED AND DROPPED 4-1

4.2 CRITERIA STUDIED AND DROPPED 4-1

4.3 METRICS STUDIED AND DROPPED 4-2

5.0 VALIDATION 5-1
5.1 VALIDATION OF QUALITY MODEL 5-1

5.1.1 Overview of Validation Effort 5-1
5.1.2 Selection of Projects for Validation 5-2
5.1.3 Selection of Modules for Validation 5-3

5.2 DATA COLLECTION 5-5

5.2.1 Metric Worksheets 5-5

5.2.2 Quality Rating Questionnaires 5-5

5.3 DATA ENTRY 5-7

5.3.1 Metric Data Entry Files 5-7

5.3.2 Quality Rating Entry 5-9
5.3.3 Data Entry in "S" 5-9

5.4 DATA ANALYSIS 5-9

5.4.1 Expandability Data Analysis 5-9

5.4.2 Survivability Data Analysis 5-17

44.

del e

TABLE OF CONTENTS (Conks"w

Paf~e

5.5 CONCLUSIONS 5-26
5.5.1 Expandability Conclusions 3-26

5.5.2 Survivability Conclusions 5-27

6.0 RECOMMENDATIONS FOR FUTURE RESEARCH 6-1
6.1 QUALITY FACTORS AND CRITERIA 6-I

6.1.1 Ultrastability 6-1
6.1.2 Protatypeability 6-1
6.1.3 Distrlbutedness, Integration, and Transparency 6-2 J

6.1.4 Parallelism vs. Provability 6-3
6.1.5 Responsiveness vs. Consistency 6-3

6.2 CENTROID OF A DISTRIBUTED SYSTEM 6-4!
6.3 REFERENCES FOR FUTURE RESEARCH 6-9

APPENDIX A BIBLIOGRAPHY A-1
APPENDIX B GLOSSARY OF KEY TERMS B-1

APPENDIX C VALIDATION WORKSHEETS C-I
APPENDIX D RATING QUESTIONNAIRES D-1

-ivS

LIST OF FIGURES

Fibre Title PaEe

1.1-1 Software Quality Model/Framework 1-2

1.3-1 Quality Metrics for Distributed System Task Flow 1-6

2.1-1 Relationship of Criteria to Software Quality Factors 2-4

3.0-1 Software Quality Model 3-2

3.1-1 Relationship of Criterion to Software Quality Factors 3-13

3.2-1 Relationship of Criteria to System Quality Factors 3-27

5.4-1 Expandability Individual Criteria Scores for all Projects vs.

Individual Rating Values for all Projects 5-13

5.4-2 Expandability Mean Criteria Scores vs. Mean Criteria Rating

Values 5-14

5.4-3 Expandability Mean Criteria Scores vs. Factor Rating Values 5-15

5.4-4 Expandability Mean Criteria Scores vs. Man-Month Ratios 5-16

5.4-5 Survivability Individual Criteria Scores for all Projects vs.

Individual Criteria Rating Values for all Projects 5-20 N
5.4-6 Survivability Mean Criteria Scores vs. Mean Criteria Rating Values 5-21"
5.4-7 Survivability Mean Criteria Scores vs. Factor Rating Values 5-22
5.4-7 Survivability Mean Criteria Scores vs. Mean Criteria Rating Values 5-22

5.4-9 Survivability Mean Criteria Scores vs. Factor Rating Values 5-24

_.o

.. - . . - ° - . . .o , " .
n a-...,. .. ,...', ,•

% f * % %
1

LIST OF TABLES
Table Title Page

2.1-1 Software Quality Factors 2-2

2.1-2 Metric Table Example 2-6
2.2-1 Metric Table and Worksheet Changes 2-7
2.2-2 Criteria and Metric Changes 2-9
2.2-3 Metric Worksheets Summary 2-11

*3.1-1 Quality Life-Cycle Scheme 3-4
3.1-2 Software Quality Factor Definitions 3-5

*3.1-3 Relationship of Quality Factors to Life-Cycle Phases 3-
3.1-4 Relationships Between Software Quality Factors 3-8
3.1-5 Relationships Between Software Use and Quality Factors 3-9
3.1-6 Typical Factor Tradeoffs 3-l1
3.1-7 Software Quality Ratings 3-12
3.148 Software Quality Factors and Criteria 3-15
3.1-9 Software Quality Criteria Definitions 3-16
3.1-10 Effect of Criteria on Software Quality Factors 3-20
3.1-11 Metric Tables Summary 3-21
3.2-1 System Quality Factor Identification 3-24

3.2-2 System Quality Factor Definitions 3-25 >

3.2-3 Distributed System Quality Factors and Criteria 3-29
*3.2-4 Relationship Between System and Software Factors 3-30

5.3-1 Metric Values: All Projects, AUl Worksheets 548

5.4-1 Expandability Criterion Scores 5-10 0d

5.4-2 Expandability Quality Rating Values 5-11

5.4-3 Summary of Statistical Analysis for Expandability 5-12
5.4-4 Survivability Criterion Scores 5-17

5.4-5 Survivability Quality Rating Values 5-18 I

5.4-6 Summary of Statistical Analysis for Survivability 5-18J

5-7 Survivability Criteria Scores, Worksheets I and 2 5-23
5.4 Summary of Statistical Analysis for Survivability, Worksheets I and 2 5-23

-vi-

SECTION 1.0
EXECUTIVE SUMMARY

1.1 OB3ECTIVES OF RESEARCH

This work was performed under a research contract (F30602-80-C-0330) for Rome Air

Development Center, Griffiss AFB, NY. The object of this effort was to develop

techniques which can be used to measure distributed system software quality. The study

looks at both hardware and software from a life cycle viewpoint, studies the effect that

-4 hardware or operating environments, i.e., distributed systems, have on software quality,

and studies tradeoffs between hardware, firmware and software. This study was

conducted to develop and validate proposed metrics for software quality on netw- .d

computers and distributed systems. This effort was also conducted to expand and r 'e

the software quality measurement framework defined in prior Government (R 2)

contracted work; Factors in Software Quality, F30602-76-C-0417 and Software Qt -L'

Metrics Enhancement, F30602-78-C-0216.

1.2 BACKGROUND

Rome Air Development Center (RADC) has been pursuing a program intended to achieve

better control of software quality since 1976. This program has been seeking to identify

the key issues and provide a valid methodology for specifying and measuring software

quality requirements for software developed for major AF weapon systems.

In 1976 RADC and the Electronic Systems Division (ESD) sponsored an effort which

defined a set of eleven user-oriented characteristics or quality factors (correctness,

efficiency, integrity, usability, testability, flexibility, reusability, maintainability, relia-

bility, portability, and interoperability) which extended throughout the software life-

cycle. This effort established a hierarchical software quality measurement framework as -

shown in Figure 1.1-1. The user-oriented factors, for use by acquisition managers to

"-, *. - .. .*,,.*,,. ,.......... ,-..-........... '..... ... , ,.. ., -,.. . .-....... .- ,, .-.....

-4.. % °% ..

USER-ORIENTED VIEW OF
FACTORPRODUCT QUALITY

SOFTWARE-ORIENTEDCRITERION CRITERION CRITERION AlI TSWIHV

INDICATE QUALITY

,' -. 4-.

"t OFA'RIBUTES

MERI E /I MPRICUT AITATV MEASURE

Figure 1. 1-1 Software Quality Model/Framework

1-2

.. O..WA-ORETE ,,,
CRTEIO RIERO ATRBUE WHICH" V

" - ' . " ...-..-.. - IN IA EQ ALT ""

a' a'a ' *'-.%"' . - 9 .. V . .. - - -

- * -* a - .

*~ ~ ~ ~ ~~- . -. W.%r--

specify quality requirements, are at the top level. The software oriented criteria

(attributes which indicate quality) and software metrics (quantitative measures of

attributes) are at the second and third levels respectively. The metrics represent the

most detailed level of the framework and completely define quality in terms of

measurable elements. Taken collectively, this hierarchy formed the basis of a model for

predicting and controlling software quality. This research was performed under contract

F30602-76-C-0417, and was described in technical report RADC-TR-77-369, Factors in

Software Quality.

In 1978, RADC and the US Army Computer Systems Command sponsored additional

research to enhance this framework under contract F30602-78-C-0216, Software Quality

Metrics Enhancement. The results of this effort were reported in technical report

RADC-TR-80-109, Volume 1, Software Quality Metrics Enhancement and Volume II,

Software Quality Measurement Manual. The manual provides methodology to assist the
AF acquisition manager in describing to a contractor what quality factors the manager

considers the most important.

In 1979, RADC and the US Army Computer Systems Command issued contract F30602-

79-C-0267 to develop an Automated Quality Measurement Tool for the H6180/GSOS

Computer system. The purpose of this tool was to automate the collection of specific

metric data, and to provide quality measurement assessments. This tool was delivered to

the Air Force in September 1981.

In 1980, RADC sponsored further research of the software factors of interoperability and

reusability (Contract F30602-80-C-0265). The objective was to enhance the Software

Metric: Model by incorporating new findings for these two factors which had not been

extensively studied in prior research contracts. The contract resulted in adding new

criteria and metrics for these factors. The results of this effort are incorporated in

Volume I of this report (Software Quality Measurements Manual).

In 1980, RADC also sponsored this research contract to extend the quality measurement

framework to distributed systems and to transition the information into a form useful to

the AF software acquisition manager. The prior research focused primarily on the

software subsystem and largely ignored the total system aspects such as the computing

hardware, operating system and communications network. The increasing demand and

importance of distributed systems in future defense systems created a need to extend the

"'04 1-3

%-... .

framework to address system quality concerns which affect the emphasis and meaning of
software quality. The system quality concerns cha.1ged the emphasis of a software quality
factor, criterion or metric and required modifications and additions to the software

quality framework.

-~ It will be increasingly important to understand distributed computer systems. Some of
their characteristics will emerge more extensively in future configurations. One
characteristic peculiar to distributed systems, and of importance in the 1980's, is

* geographic dispersion. The extent to which computers within a distributed system can be
physically displaced from each other, range from the centimeter to the multi-thousand-
kilometer. Computers will be "tightly-coupled" over intercontinental distances by fiber-
optics technology currently under research. Interconnection of even a very small
percentage of available computers will be able to form distributed systems of complexity

beyond those of today, since by 1999 there will be on the order of one billion computers in
the world.

41-

a.%

1.3 TECHNICAL APPROACH

The approach to this problem was to use the previous work accomplished by RADC (see

section 1.2) as well as previous Boeing software quality metrics research as a baseline.

The technical approach was divided into a series of 9 tasks in order to accomplish the

.2 objectives of section 1.1 and the requirements of section 4 of the contract statement of
work.

Task 1: Identify distributed system characteristics
Task 2: Define system quality perspective
Task 3: Determine ef fect of 111W and F/W on S1W quality

Task 4: Develop software prediction and control methodology

Task 5: Refine and expand quality framework
Task 6: Select quality metrics for validation
Task 7: Develop scenarios and collect data

Task 8: Validate metrics

Task 9: Integrate results into a guidebook

Figure 1.3-1 summarizes the interrelationships among these tasks.

In Task 1, the characteristics that distinguish distributed systems from uniprocessors and

centralized processors were identified. Distributed systems were analyzed from several

standpoints, including: rationale for selecting a distributed system architecture;

characterization of the distributed system design philosophy; and impact of hardware

architecture on distributed system quality factors. The results served as input to Tasks 2

and 3, are reported in Volume III of this report, and are summarized in section 2.3 of this

volume.

In Task 2, a framework for including software in the process of allocating system

requirements and quality goals was developed. Distributed system quality factors were
developed and related to software quality factors and the impact of system quality was

assessed. The results provided input to Tasks 3 and 5 and are reported in section 2.2.

1-5

Uw WT - - .. v- .. -. V% 19% , -

1 151
U I"

fill lot.I "
. U

S I ,

I %B

I Iii

i ..e

%!...I!r, . . ,

--

i oil

ILI

All
q

1-7

I --

"%tI,
4, 9. 8,II• v, " ," ,". ," .''.'r'* .'. ".. .-.' " .'.' '. .'. .'. .. .'... ...

'I
• ".

, , ., ,..,,.. -' : ,, -.,., .,.. - -. .-

, . , ,,, -T. - EU , ,. '. .- ,. ". : , ; . .' '. .- ,. .,' . . f ,: -,.," 'f'" .," -rr, , .~ , , ,,'r,,,-o q,, ,q- T..o, v,#r,,..' '. -:q, q..','... " .-. . " ... " . ,*. ,

In Task 3, the distributed system design process was analyzed from several points of view,

looking at issues that arise in allocating system quality requirements to hardware and
software. Issues that arise between acquisition managers - system/software, software/
hardware and between acquisition managers and contractors were addressed. Distributed
system trade-off s among hardware, f irmware and software were identified. Task 3 results
provide input to Task 4 and are reported in section 6.3 and 7.2 of Volume III.

In Task 4, prediction and control methodology was developed for analyzing a distributed
*system in terms of software quality. The methodology includes assessment of the

influence of system elements to enable design latitudes in achieving desired quality of
software. The results are input to Task 5 for updating the framework and are reported in
Sections 3, 4, and .5 of Volume 111.

In Task 5, the software quality measurement framework documented in prior RADC
Technical Reports, "Software Quality Metric Enhancement" and "Software Quality
Measurement Manual", (RADC-TR-80-109, Vol. I & 11) was refined, expanded, and
improved for factors relevant to distributed systems. The metric worksheets and tables

4l.~ were modified based on the results of prior Tasks. These results are used in Task 6 to aid

in selecting metrics to be validated and are reported in section 3.0 of Volume 11.

In Task 6, those metrics that will make the greatest contribution to validating the
framework were selected based on the number of criteria to which the metric is
applicable, the expected sensitivity of quality factors to the metric, the results of
previous validation efforts, the value of the metric in establishing trade-of fs between
quality factors and between HW/FW/SW, and the results of pilot testing. Selected metrics
are input to Task 7 and are reported in section 5.0.

.4.;.,In Task 7, scenarios for data collection were identified and designed, and data was
4 collected to perform validation. Data was collected from Boeing projects with distributed

* systems. The potential for automated data collection was assessed. These scenarios were
used to collect data in Task 8 and the results of this Task are reported in section 5.2.

In Task 8, the validation techniques used in RADC-TR-77-369 were reviewed and

compared against other methods and refinements were made. Methods such as regression
analysis without forcing the line through the origin and use of stepwise multiple regression

*** .. *were investigated. The metric data was collected from selected Boeing projects and the

4..

results evaluated to update the metric worksheets and validate the methodology. The

results of this validation effort are reported in section 5.3 and 5.4.

In Task 9, all of the results of the other tasks were integrated incrementally to prepare

contract reports and the guidebook. Volume I, Software Quality Measurement for
Distributed Systems, includes an Executive Summary, the Factor/Criterion/Metric

Framework, and the Statistical Validation. The guidebook describing how to use quality

metrics for distributed systems is contained in Volume II, Guidebook for Software Quality
Measurement. Volume III, Distributed Computing Systems: Impact on Software Quality,

identifies the characteristics of distributed systems, provides an historical overview,

analyzes the reasons for selection of distributed systems, classifies design strategies,

provides a taxonomy of architecture topologies, presents scenarios, and analyzes

hardware/software/firmware tradeoffs.

1.4 SUMMARY OF ACCOMPLISHMENTS

The objective of this contract was to develop techniques to measure distributed system

quality with a perspective on both hardware and software from a life-cycle viewpoint.

The approach used in accomplishing this objective was to:

1) extend the factor/criteria/metric framework of McCall et.al. to distributed

computing systems;

* 2) define and validate new factors, criteria, and metrics to meet the unique

characteristics of such systems;

3) develop design guidelines and tradeoffs for choosing between quality factors;
4) incorporate techniques into a guidebook for implementation. "f

The original factor/criteria/metric framework of McCall et.aL is described in section 2.1.

The attributes of distributed systems, and their impact on the factor/criteria/metric

framework, are explored at length in Volume I1. The transition from the original (McCall) ff

framework to the new framework is outlined in section 2.3, and the new factors, criteria,

and metrics are listed in section 2.2. Design guidelines and tradeoffs for choosing

between quality factors are given in section 3.1 of Volume II. Volume II is the guidebook

for implementation.
,J.1

1-9

ft. yftftftft:ftftftf•t. ..ft.ft.t . .. , ., ,, , ..,. ,,,_ " ' ,

1.4.1 Framework changes

The following paragraphs summarize changes in the elements of the metric framework.

New and Modified Franaiwark Elements

Two new quality factors were defined, survivability and expandability, and the quality

factor testability was changed to verifiability, a more general term. Five new criteria

were added to the framework, and eleven former criteria were modified and condensed

into seven criteria. Eleven new metrics and sixty-seven new metric elements were

defined.

P

The two new quality factors are defined as follows:

Survivability - probability that the software will continue to perform or support critical

functions when a portion of the system is inoperable; and

Expandability - effort to increase software capability or performance by enhancing

current functions or adding new functions/data.

Survivability is of considerable importance to distributed systems, but was legitimately

overlooked by McCall et.al. in their framework for uniprocessors. From a user standpoint,

a uniprocessor is either "up" (operational) or "down" (non-operational), whereas a

distributed system must be designed to cope with situations where a portion of the system

is inoperable. The criteria for survivability are autonomy, distributedness, anomaly

. management, modularity, and reconfigurability.

Expandability, as a factor, recognizes the way in which computer systems grow during

their life-cycle. Also applicable to uniprocessors, Expandability measures the relative

ease with which this growth is possible. The criteria for expandability are virtuality, .

* generality, modularity, augmentability, specificity, and simplicity.

The details of the framework changes are presented in Section 2.2, Framework Enhance-I ments. The details of the new framework are presented in Section 3.0, Distributed

System Quality Metrics Framework.

1.10

l-lO

Framework Elements Proposed and Dropped

One quality factor, evolvability, was dropped from the new framework because of its
similarity to expandability. Six criteria were dropped from the new framework because of

their similarity to other criteria or because of lack of metrics to support them. No

metrics were dropped, but twenty-six metric elements were proposed and dropped either

because of their overlap with other metric elements or because of their vagueness.

The details of the framework elements which were proposed and dropped are presented in

Section 4.0, Transitional Study.

1.4.2 Design Guidelines and Tradeoff Analyses

New design guidelines were added to support tradeoff analyses for the situations where

requirements for high quality levels for two iuality factors would conflict; i.e., where

specifying a high quality level for one factor would naturally result in a low quality level

for another factor. New guidelines were added for tradeoffs between survivability and

five other factors - efficiency, integrity, flexibility, portability, and reusability. New
guidelines were added for tradeoffs between expandability and three other factors -

reliability, efficiency, and integrity. New guidelines were also added for tradeoffs

between reliability and two other factors - efficiency and flexibility.

.

The complete set of design guidelines for tradeoff analyses is presented in Section 3.1.1,

Software Quality Factors.

1..3 Quality Metrics Guidebook

The guidebook for quality metrics is Volume II of this report. It represents a substantial

update to the former handbook - Software Quality Measurement Manual,

RADC-TR-80-109. The guidebook includes updates for distributed systems from this

contract and incorporates results from contract F30602-80-C-0265, Software Interopera-

bility and Reusability. The metric worksheets and metric tables are now appendices to

Volume II and are considerably revised, extended and reorganized for greater convenience
.541of use and updating. The worksheets are now more parallel in structure to ease the data

gathering task. The metric tables are now organized alphabetically by criteria name.

~ ,-.. d~?. -S

~~I~~~~~939~~~~~-r , -, '.~ -, -* -.. - 7* 77.~I- -*~~. 'J d 4.

.?"

1.. Data Collection, Analyses, and Validation

Data was collected and analyzed for the two new quality factors - survivability and

expandability. Metric data and quality level rating estimates were gathered from four

projects with distributed computing systems: UDACS (Universal Display and Control

System), E-3A (Airborne Warning and Control System), B-I Avionics (for the B-I bomber),

and MPRT (Morgantown Personal Rapid Transit System).

Correlations between quality ratings and metric values show a positive relationship and

therefore support the addition of the expandability and survivability quality factors. This

result, and the fact the data collection and analysis methodology was used successfully,

also supports the applicability of the software metrics technology to distributed

>1 computing systems. The details of this effort are presented in Section 5.0, Validation.

1.5 CONCLUSIONS

The work performed under this contract, the work performed under the Interoperability

and Reusability contract, and the work performed by other contractors are part of a

continuing technological trend. The need for more thorough measurement of software and

system quality is being met by a more detailed and complete methodology. Distributed

embedded computer systems are more complex than uniprocessor systems, and the '

* applicability of the factor/criterion/metric methodology to these systems is an accom-

plishment which supports the continued use of that methodology. Among other benefits,

this enables the tradeoffs between hardware, software, and firmware to be made more

objectively than in the past; this may improve cost, schedule, and optimization. The basis .' ..

of the methodology is to measure as many attributes of the system as are relevant, and to

appropriately weight these measurements. This is a complex task, but is more realistic

and effective than to search for a small number of metrics which somehow describe the

entire system.

1-12

,. ,,,,,..,; , ,, ,.,r..-N. .. 4%, ..,. ..J. ., . .,,,. .,, ,,., , . > •

T-1 57 R. -7

SECTION 2.0
SOFTWARE QUALITY FRAMEWORK ENHANCEMENTS

This section identifies enhancements made to the original software quality framework.

The original framework was developed under previous RADC contracts (F30602-76-C-0417

and F30602-78-C-0216) and was used as a baseline for expanding the framework to include

distributed systems. The following paragraphs highlight the initial framework, describe

framework enhancements for distributed systems, and reference the research that led t.
changes and additions to the framework. Section 3.0 describes the comptete qualit"

metrics framework which was developed for distributed systems. A complete description

of the original quality framework can be found in RADC-TR-80-109.

2.1 INITIAL FRAMEWORK

This section identifies the framework which was developed under previous contracts and

used as a baseline for enhancements. The quality model and separate framework elements

are discussed.

2.1.1 Quality Model

A simple model was developed for viewing software quality which is highly flexible. This

" model was shown in Figure 1.1-1. A hierarchical relationship is shown between a quality

factor, quality criteria, and quality metrics. Quality factors are top-level views of

quality and represent concerns of the acquisition manager or product user. Criteria are

software-oriented attributes. Criteria are a more detailed representation of what is

meant by quality and are technically oriented. A metric is a specific representation of

what is meant by quality-more detailed than criteria. The presence or absence of a

particular metric in the software is a quantitative indication of the degree of quality

present. This model is flexible in that it indicates a general relationship between

categories. New factors, criteria, and metrics may be added without affecting the model.

2.1.2 Framework Elements

The initial framework contained eleven quality factors, twenty-three quality criteria, and

thirty-nine metrics. Table 2.1-I identifies and defines the quality factors. The factors

.4a.

2-I

'4.%

e . *f * . , . , . , .Fpa, M~b --.. ,. 'j-, % ".% " ° , . . I. . . . ••.%.• ,

oI..

Table 2.1-1 Software Quality Factors

CORRECTNESS Extent to which a program satisfies its specification
and fulfills the user's mission objectives.

REUABILITY Extent to which a program can be expected to
perform its intended function with required
precision.

INIAL
PRODUCT EFFICIENCY The amount of computing resources and code

OPERATION required by a program to perform a function.

INTEGRITY Extent to which access to software or data by
unauthorized persons can be controlled.

USABILITY Effort required to learn, operate, prepare input,
and interpret output of a program.

LIFE
CYCLE MAINTAINABIUTY Effort required to locate and fix an error in an
STAGES operational program.

PRODUCT
REVISION TESTABIIUTY Effort required to test a program to insure it

performs its intended function.

FLEXIBILITY Effort required to modify an operational program.

PORTABILITY Effort required to transfer a program from one,-
hardware configuration and/or software system to "
another.

PRODUCT
TRANSITION REUSABIUTY Extent to which a program can be used in other

applications - related to the packaging and scope of
the functions that programs perform.

INTEROPERABIUTY Effort required to couple one system with another.

NOTE: This table represents the original framework developed under contract
F30602-78-C-0216 and was taken from RADC-TR-80-109, Volume I,
Page 1-8.

.S.o

2-2

are divided into three life cycle stages, or activity categories: initial product operation,

product revision, and product transition. Each factor is most significant during a period

when one of the three categories of activities is being performed.

Figure 2.1-1 (taken from RADC-TR-80-109, Volume 1, pages 1-9 and 1-10) shows the

initial twenty-three quality criteria in relationship to the eleven quality factors. Note

that some criteria appear under more than one factor.

The initial thirty-nine metrics are identified in the next section (2.2) in Table 2.2 -2 under

"former metrics". Each metric is defined by a number of metric elements, with

definitions for each metric element. This information was compiled into a set of metric

tables, an example of which is shown in Table 2.1 -2. The complete list of tables is

contained in RADC-TR-80-109. The tables are used in conjunction with metric

worksheets for tabulating metric values. The tables are categorized by criteria and

subcriteria and indicate the applicable development phase(s) for each metric element.

2.2 FRAMEWORK ENHANCEMENTS

This section identifies the enhancements made to the baseline framework. New quality

factors, criteria, metrics, and metric elements were identified; some baseline framework

elements were modified. The software life-cycle phases were expanded from three to
five. The worksheet categories were enhanced to accommodate the new and modified

framework elements. The complete quality metrics framework for distributed systems is

described in Section 3.0.

*2.2.1 Quantitative Change Summary

Table 2.2-1 summarizes the quantitative changes to the baseline framework elements.

The third column (New) indicates that even though only two quality factors were added, a

considerable number of metric elements and worksheet references to those metric

elements were added. This is because the basis of change to the framework elements

stemmed from considering the ef fect of distributed systems on quality; this consideration

* affected all framework elements.

2-3

P..

-. '"-..-

* -:

" CORRECTNESS -

" . REABIUTY.-, 4:

'EFFICIENCY

SINTEGRITY LGN

ii 0 Factor

,, USABILITY"

... I Training 7 Fcommunicativenes l i Operability

.- ,.

...

:.-.,

* Executnc ionpficieCncsns Stoa t Efice ecipiens

Figure2.1-1 Relationship of Criteria to Software Quality Factors

As 2.

-"' 4.

4"', - : ." . . - ' -. -....-.'..

- -f.--. - ft. -- f..-t~f..- ft~t *FLEXBILTY-

Modl~a~if Gftrln ~ xad Dsripiees

*4MahneIdeedecAofwat

Mouaiy.iens efDMcin needne otaeSse

Indpenen-

,4.* 4.I

-ft.--dlait emTes

SoftareSys Macine Se~-,DecritiL
yste Sel-Des

ftdeende Ineenec

NTEROftcA IL

art 'muictosomnat.t~] aaCm~n

2-5.

WA4

mnrI0l0l0
___ JLL

dcI

goIIi
IA w

w c11=11= =11=

a > I I

'V '<0i 9 05 -c-lg

2 LU

2-6-

%. 7.Q-

'.

Table 2.-1 Metric Table And Worksheet Changes

Proposed
Former Modified New Current & Dropped

Metric Tables:

Factors 11 1 2[+18%] 13 1

Criteria 23 11.7 5(+22%] 24 6
Metrics 39/2 * 0 111+28%] 50/2 * 0
MetricElements 154/26 * 9 67[44%J 22126 * 26
Worksheet References 202/3 * 6 119(+59%] 321/3 * 0

A' Metric Worksheets:
Worksheet Categories 38 8 Si + 13%] 43 2

Worksheet Entries 241/3 * 10 132[+55%] 373/3 * 0

* a Active/Deleted

. **= 45 of 373 are multiple entries

Y.0 °

%.
°- A.

C. .

-A1

- ~ 2.2.2 Metric Categorization

The baseline framework used both criteria and subcriteria in the categorization of the

metrics. Table 2.2-2 shows the correlation between the baseline framework and the new ~

framework. Subcriteria have been combined for simplicity. The criteria have also been

alphabetized.

2.2.3 Life-Cycle Phases

The baseline life-cycle phases have been expanded f rom three to f ive. The baseline

phases were requirements, design, and implementation. The new phases are requirements

analysis, preliminary design, detailed design, implementation, and test and integration.

Design was divided into preliminary design and detailed design. This enabled a direct

correlation between worksheets and phases; each phase now has one worksheet. Work-

sheet I is used in requirements analysis; worksheet 2 is used in preliminary design;

worksheet 3 is used in detailed design; worksheet 4 is used in implementation; and a subset

of worksheet 2 is used in test and integration. The specific subset is indicated in the

metric tables of Appendix B of Volume 11 of this report.

42.2.4 Worksheet Categories

The metric worksheet categories were revised as indicated in Table 2.2-3. New

categories were added to accommodate new metrics. Some category names were revised

* and the category sequences were reordered to ease the task of data acquisition. Wherever

possible, the same or similar metrics were grouped under the same category name and

given the same category sub-number for each worksheet (e.g., structure -1.1, 2.1, 3.1,

and 4.1). There are five new categories indicated with an asterisk (w)and eight

* ~category name changes indicated with a double asterisk (*I)

Note that Table 2.2-3 reflects the structure which was used in the validation performed

under this contract. Several categories were added and changed when information from

the Software Interoperability and Reusability contract F30602-8O-C-0265 was integrated.

These changes are reflected in Appendix A of Volume 11 of this report.

2-8

Tabl 2.2-2 Criteil and Metric Changes
REVISED FORMER

~T AMETRIC SUGCRITERLA METRIC

ACCURACY AYAl Aicunacy Oieckhest ACCURACY AC. 1 Accuracy Check list

ANOMALY AM.1 ErrrTo erancaCOXn1trsl Checklst ERROR TOLERAWCEIONTROL ETAl Error Tolerance~ontroll Checklist
MANAISEME[NT

AM.2 Improper input Data Checklist INPUT DATA ET.2 Recovery From improper input t
Data Checklist

AM.3 ComputationailFailurielChecit RECOvERARLE ET-3 Recovery From Comnuptational
'1COMPUTATIONAL FAILURES Failures Checklist

**AMA4 HardweFaultChecklist RECOVERABLE HARDWARE ETA Recovery From Hardware Faults
*44.FAULTS Checklist

AM.5 Deice Errors Checklist DEVICE STATUS CONDITIONS ET.S Recovery From Device Errors
Checklist

$.AUGM TARI IiTY AGAI Dat Storage Expansion Measure EXPANDAIIILITYIOATA EX, 1 Data Storage Expansion Measure
-. STORAGE EXPANSION i

*44AG.2 Computation Extensibility COMPUTATION EXTENSIRIUTY EX.2 Extensibility Measure
Measure

COMMNALI4ATY CL.I Communications; Commonality COMMUNICATIONS CC.I Communications Commonality
Checklist COMMONALITY Checklist

CL2 Dat Commonality Checklist DATA COMMONALITY OC. I Data Commonality Checklist

COMMUNICATIVENESS CM. 1 User Input Interface Meaure COMMUNICATIVENESSIUSER CM. I User input Interface Measure
* INPUT INTERFACE

CM.2 UserOutput lnterfaceMeasure USER OUTPUT INTERFACE CM-2 User Output Interface Measure

* .COMPLETENESS CPA1 Completeness;Checklist COMPLETENESS CPA1 Completeness;Check list

*CONCISENESS CO.1 Halstead's Measure CONCISENESS CO I Halstead's Measure

CONSISTNICY CS.1 Procedure Consistency Measure CONSISTENCY/PROCE DURE CS. I Procedure Consistency Measure
* ~ CONSISTENCY

CS.? Data Consistency Measure DATA CONSISTENCY CS.2 Data Consistency Meausre

**EFFECTIVENESS EFAl Performance Requirements EXECUTION EE.1 Performance Requiremecits
- EFFICIENCYIREQUIREMENTS Identified and allocated to Design .

EF.2 Iterative Processing Efficiency ITERATIVE PROCESSING EE.2 Iterative Processing Efficiency
Measure Measure

EF.3 Data Usage Efficiency Measure DATA USAGE EE.3 Data Usage Efficiency Measure

E.4 Storage Efficiency Measure STORAGE EFFICIENCY SE.I Storage Efficiency Measure

GENERALITY GE. I Module References by Other GENERALITY REFERENCES GE. I Eixtent to Which Module is
Modules Referenced by Other Modules

GE.2 Implementation for Generality IMPLEMENTATION GE.? Implementation for Generality
Checklist GENERALITY Checklist

INDEPENDENCE 10.1 Software System Independence SOFTWARE SYSTEM SS.I Software System indepiendence ..
Measure INDEPENDEN4CE Measure

-S0ID2 Machine Independence Measure MACHINE INDEPENDENCE MIA1 Machine Independence Measure

2-9

Table 2.2-2 COiteuia and Metric Changes (Continued)
REVISED FORMER

CRITERIA METRIC SIJORITERIA METRIC

MODULARITY DEILETED MOCULATYIDEGREE OF MO.l Staility Measure
INDEPENDIENCE

MO.2 Modular Imnpletmentation MODULAR IMPLEMENTATIONi MO.2 Modular Implemsintation
Measure Measure

Off RAIUTY OP I Oweabilty~icklust: OPEPABIUITY OP.1 Operalikty Checklist

SELF-OESCRIPTIVENESS SO.1 Quanttyf Commnt SELF-OESCRIPTIVENESSI SD.I Quantity of Comments
QUANTITY OF COMMENTS

SD.2 Ef~ectivessoE Comments EFFECTIVENESS OF COMMENTS SO.2 Effectivenmess of Comments
Measure measure

SO.3 Descriptiveness of Language DESCRIPTIVENESSOF 50-3 Desciptiveness of
Measure IMPLEMENTATION LANGUAGE Implementation Language

Measure

SIMPLICTY SIA Design Structure Measure SIMPLIOTYIDESIGN SIAl Design Structure Measure

S1.2 Structured Language or STRUCTURE PROGRAMMING SI.2 Use of Structure Language or
jPreprocessor Prepirocessor

SI.3 Data and Control Flow Complexity DATA AND CONTROL. FLOW SI Complexity Measure
N Measure COMPL.EXITY

SIA Coding Simplicity Measure CODE SIMPLICITY SI.4 Measure of Coding Simpliciy

SYSTEM ACCESSISIIITY SA.I Acces Control Checklist ACCESS CONTROL AC.1 Access Control Checklist

SA2 Access Audit Checklist ACCESSAUDIT AA.1 Access Audit Checklist .-

TRACEABIUTY TR.1 Cross Reference TRACEAIULTY TR.I Cross Reference Relating Modules
to Requirement

TRAINING TN.1 Training Checklist TRAINING TN.1 Training Checklist

VISIBILITY VS.l module Testing Measure iNSTRUMENTATIONIMODULE IN.A Module Testing Measure
TESTING SUPPORT

VS.2 Integration Testing Measure INTEGRATION TESTING IN?2 Integration Testing Measure
SUPPORT

VS.3 System Testing Measure SYSTEM TESTING SUPPORT IN.3 System Testing Measure

2-.

%0

',..:* .

7w Us V

ail

a' .. . *

CA
a--

'C w

* " C- *_

C *. ji. • 4 t -3-

"0

Inr *. .4.A
4

0

22-11

a,-¢a M m
++ -+ •+ '. - if, -,;, " e " ." . :

% o% % ,,. ., ,i. i+ . , . % . +,, o %-. .--.- + m .+ ,. .- .'.'.'.' .---. -, -. " .'

.'n '." +'' . +''j % '., ."""% .. '-','..+.. +". ' . . *. -, .'' - '.' -.. .. ".. ,. .. '.,

The acronyms used in Table 2.2-3 for the quality factors are as follows:

CO - Correctness

RL - Reliability

EF - Efficiency

IG - Integrity

US - Usability

SV - Survivability

MA - Maintainability

VE - Verificability

FX -Flexibility

PO - Portability

RU - Reusability

IP - Interoperability

EX - Expandability

2.3 TRANSITION TO NEW FRAMEWORK: SUMMARY OF VOLUME M.-

Volume III of this report is titled "Distributed Computing Systems: Impact on Software

Quality". What follows is a summary of the contents of that volume, presented in the

, context of the transition from the old quality metrics framework to the new framework.

Distributed Computer Systems have been variously defined, and these definitions are

compared. An historical overview is provided, as well as the relationship to the current

DoD software initiative. "' "

Over 50 rationales are given for the selection of a distributed system rather than a

. uniprocessor system. These rationales are grouped into 9 reasons, where each reason is a

high-level system acquisition goal. A matrix relates these rationales and reasons to those

quality factors most impacted. Within each reason there are tradeoffs, and tables

illustrate the tradeoffs.

There are three areas which must be addressed in the design of a distributed system.

These areas are: the distribution of control and processing, the structure and distribution

of the data base, and the strategy for communication among the elements of the system.

2-12
16'

4 :',':.- ,.---'.-..-......................--..-...-.........- .-.---.

.'4,-. ,,.4--- L.";",..: . " ;" ."" , , '".'. ; ;' ' ' " """' '''' ,"."' "- "" "", "- " " "" ""' "-""" '
t ',r~ -, , , ' 'r~~r ' .,' .' ',', T ' .. ' I- I- .,,' .. '. -'-.',.

".
.-. , .'- -. ' -! -- ',' '- 1'- .*--

Successful design strategies in each area are outlined, with an emphasis on quality

factors.

Distributed system topology is a term referring to the physical or logical pattern of
:. interconnection of system components. Aspects of distributed system topology discussed

in Volume III include:

* topology impact - how and why topology is related to system quality factors

• . communications strategies differing approaches to routing messages between

nodes
* distributed system layers - the ISO Reference Model for interprocessor

communication protocols
* distributed system architecture classification - what topologically different

designs are possible, and their relative advantages

• distributed system hardware architecture (topology) impact on system quality

* distributed system hardware (topology) impact on software quality

.,

Fourteen particular topologies are illustrated, from the familiar (loop, ring, bus) to the

more exotic (cube-connected cycles, binary hypercube, shuffle-exchange).

A number of scenarios were developed that collectively cover many of the major system

and software quality allocation issues that arise in distributed systems. Scenarios include:

distributed command and control, distributed communications, distributed database, -

distributed avionics, distributed functional testing, distributed space systems, distributed

virtual topology, distributed optoelectronics, and distributed microcircuit multiprocessor.
...'

A tentative classification is introduced for the decisions available to software, hardware,

and system acquisition managers. The concept of a distributed system life cycle is

outlined.

A number of firmware issues are explored. These include the difficulties of procurement,

an example of Ada implementation, and the quality factors involved in hardware/
firmware/software tradeoffs. A classification is introduced which emphasizes nardware/

- firmware/software tradeoff opportunities in memory management, operational manage-

ment, 1/0 management, error monitoring, and special algorithmic capabilities.
2

2-13 .

* " * **"*.- * * ~

,% .

. . ..o ,

Efficiency, virtuality, adaptation, performance, and reliability are discussed in terms of

direct and indirect effects of hardware architecture on system quality. Quality factor

emphasis and methodology as a whole are discussed, as well as qualitative relationships

between correctness and reliability.

Collectively, these qualitative studies of distributed computing systems and their impacts

on quality raised a number of issues which were not considered in the previous

(uniprocessor) framework. New factors, criteria, and metrics were developed in order to

quantitatively assess these issues. There is not a one-to-one mapping between the

discussions and scenarios in Volume III and the new factors, criteria, and metrics. Instead,

the material in Volume III illustrates the learning process of researchers in this contract

which enabled the quality metrics framework to be extended to the more complex domain
of distributed computing systems.

--

J* • " , • • * , • • • • % - . - "w '-'", , ° - ,•

N:,e , e,,. ,, . .,, , . " . . ,,• . . .'. . ',,,.' ,. .-,,, ' . ',,,.",".: ,. .,.: .
.-4 . . s . •. , . ' % " . """' '.'' ''.• '' ,'° ' ' ,-" ' ' ' ' , .

a-4XV 7-1M 77

3.0

DISTRIBUTED SYSTEM QUALITY METRICS FRAMEWORK

The goal of the quality metrics concept is to enable a software acquisition manager to

specify the types and degrees of software qualities desired in the end product and to

predict and measure the degree of presence of those qualities during the development

process. Previous work (see Section 2.0) has established a model for viewing software

* quality. Figure 3.0-1 is a s*.mple depiction of this model, showing an hierarchical

relationship between a quality factor, quality criteria, and quality metrics. Quality

* factors (e.g., usability, correctness, maintainability) are user-oriented terms representing

concerns of the acquisition manager or product user. Quality factors are used to specify

the type of quality desired. Criteria are software-oriented terms representing attributes

* of the software which, if present in the software, indicate the presence of a type of

quality (a quality factor). Operability, communicativeness, and visibility are criteria for

the quality factor usability. Metrics are software-oriented phrases or sentences which ask

* questions concerning details of an attribute (criterion) of the software. Answers to the

questions enable quantification of the degree of presence of criteria and, hence, factors.

"All error conditions and responses appropriately described to operator" is an example

* from the metric checklist for the criteria operability.

The desired quality factors are normally specified by the acquisition manager and
-r provided as part of the requirements (along with operation, performance, and design

* requirements). This enables the corresponding criteria and metrics to be identified and

used to predict the degree of presence of the desired qualities at key review points during

the development process.

Part of the purpose of this contract was to determine suitable quality metrics that will

directly apply to software on distributed systems. Previous work has established factors,

criteria, and metrics applicable to uniprocessor systems. An investigation of user

concerns and software characteristics for distributed systems shows that the previously

established factors and criteria are equally applicable to distributed systems. The

investigation also resulted in identification of new quality factors, criteria, and metrics

that are unique to distributed systems. The following paragraphs describe the full set of

quality factors, criteria, and metrics; new factors, criteria, and metrics are identified

with an asterisk. A complete description of the metrics framework and the use of the

metrics technology appears in the handbook-Volume 11 of this report.

3-1

. .*.

"-Ik .'-% 'p N 777 - -"-- -

*dS.-

FACTOR USER-ORIENTED VIEW OF
PRODUCT QUAUTY

CRITERIN CRITERION CRITERION SOFTWARE-ORIENTEDCRITRON RENCRITERION ATTRIBUTES WHICH

CT INDICATE QUALITY

.',

METMERIC MITR IC QUANTITATIVE MEASURES
OF ATTRIBUTES ..

5%

5 ' . 51

-. 9-

3-- MERCMTRCMTI QATTTVEMAUE

3.1 SOFTWARE QUALITY FRAMEWORK

This section describes the distributed systems software quality framework, including

factors, criteria, metrics, tables, and worksheets. Two new factors, five new criteria, and

eleven new metrics were added to the software quality framework.

3.1.1 Software Quality Factors

Previous analysis and evaluation of qLality factors resulted in grouping quality factors
-.' into three categories: product operation, product revision, and product transition. This

scheme emphasizes the user's view of software life cycle management, and, in addition, it

includes conversion or reapplication of the software. Table 3.1-1 illustrates this scheme.

The questions indicate the relevancy of the factors to a user. Table 3.1-2 provides

definitions for all of the quality factors. Two new quality factors were identified and one

factor was revised as discussed below:
4"

Product Operation

The quality factor survivability was added to the category of product operation.

Because components in a distributed system are physically separated, it is not

uncommon for large portions of a system to remain operative when a single unit

fails. For command, control and communications applications, users are concerned

that critical functions continue to be supported by the system even when a portion

of the system is inoperable.

% Product Revision

The quality factor testability was changed to verifiability, a more general term.

Testing is one method of verification. Other methods include analysis, inspection,

and demonstration. In systems where reliability is critical, testing is often

augmented by analysis and inspection.

Product Transition

The quality factor expandability was added to the category of product transition.

3-3

I%

.° ° . .° . o . ~- . *. -. . . .

Table 3.1-1 Quality Life-Cycle Scheme

Activity User Concern Quality Factor

DOES IT DO WHAT ITS SUPPOSED
TO? CORRECTNESS

S,,~.

WHAT CONFIDENCE CAN BE
PLACED IN WHAT IT DOES? RELIABILITY

:"* PRODUCT HOW WELL DOES IT UTILIZE '

OPERATION THE RESOURCES? EFFICIENCY .1

HOW SECURE IS IT? INTEGRITY

HOW EASY IS ITTO USE? USABILITY

HOW WELL WILL IT PERFORM
UNDER ADVERSE CONDITIONS? SURVIVABILITY*

CAN IT BE REPAIRED? MAINTAINABILITY

PRODUCT CAN ITS OPERATION AND
REVISION PERFORMANCE BE VERIFIED? VERIFIABILITY*

CAN IT BE CHANGED? FLEXIBILITY

CAN IT BE USED IN ANOTHER
ENVIRONMENT? PORTABILITY

CAN IT BE USED IN ANOTHER
APPUCATION? REUSABILITY

PRODUCT
TRANSITION CAN IT BE INTERFACED WITH

ANOTHER SYSTEM? INTEROPERABILITY

CAN ITS CAPABILITY OR
PERFORMANCE BE EXPANDED
OR UPGRADED? EXPANDABILITY*

a NEWORMODIFIED

3-4

3.'4

, L 5 2 t- -, .

- - - r .°

-"' • -' * .' k .

.-. 6 K T

Table 3.1-2 Software Quality Factor Definitions

Activity Quality Factor Definition

CORRECTNESS EXTENT TO WHICH THE SOFTWARE
SATISFIES ITS SPECIFICATIONS AND FULFILLS
THE USER'S MISSION OBJECTIVES

RELIABILITY PROBABILITY THAT THE SOFTWARE WILL
PERFORM ITS LOGICAL OPERATIONS IN THE
SPECIFIED ENVIRONMENT WITHOUT
FAILURE

EFFICIENCY DEGREE OF UTILIZATION OF RESOURCES
(PROCESSING TIME, STORAGE, COMMU-
NICATION TIME) IN PERFORMING
FUNCTIONS

OPERATION INTEGRITY EXTENT TO WHICH UNAUTHORIZED ACCESS
TO THE SOFTWARE OR DATA CAN BE
CONTROLLED

USABILITY EFFORT FOR TRAINING AND SOFTWARE
OPERATION - FAMILIARIZATION, INPUT
PREPARATION, EXECUTION, OUTPUT
INTERPRETATION

SURVIVABILITY* PROBABILITY THAT THE SOFTWARE WILL
CONTINUE TO PERFORM OR SUPPORT
CRITICAL FUNCTIONS WHEN A PORTION OF
THE SYSTEM IS INOPERABLE'

MAINTAINABILITY AVERAGE EFFORT TO LOCATE AND FIX A
SOFTWARE FAILURE

VERIFIABILITY* EFFORT TO VERIFY THE SPECIFIED SOFT-
. REVISION WARE OPERATION AND PERFORMANCE

FLEXIBILITY EFFORT TO EXTEND THE SOFTWARE
MISSIONS, FUNCTIONS OR DATA TO

________.____________SATISFY OTHER REQUIREMENTS
PORTABILITY EFFORT TO CONVERT THE SOFTWARE FOR

USE IN ANOTHER OPERATING ENVIRON-
MENT (HARDWARE CONFIGURATION,
SOFTWARE SYSTEM ENVIRONMENT)

REUSABILITY EFFORT TO CONVERT A SOFTWARE
COMPONENT FOR USE IN ANOTHER

TRANSITION APPLICATION
INTEROPERABILITY EFFORT TO COUPLE THE SOFTWARE OF ONE

SYSTEM TO THE SOFTWARE OR ANOTHER
SYSTEM

EXPANDABILITY* EFFORT TO INCREASE SOFTWAREi CAPABILITY OR PERFORMANCE BY
ENHANCING CURRENT FUNCTIONS OR
ADDING NEW FUNCTIONS/DATA

.5.

* = NEWORMODIFIED

3-5

e. .. ,, , ,. . :. :. , . ..*. •:... .. .,:.: .. ,.:-... - ... - .. : . . .: ,- : . .--. .:.
• .:....,.... . ,:...:.:....-. , .-. ,.-.... .- ,.. . -.... .-.-.-.-. ,- ... ,-. .. ,..,.. .. ,...,-:.... .

Distributed systems often evolve in size and capability over time, and older nodes

and components often require an upgrade in capability and/or performance. This

quality factor addresses the user's concern for the high cost of developing new

systems through emphasizing the extension of the life cycle of a system.

*3.1.1.1 Relationship of Quality Factors to Life-Cycle Phases

Software quality affects all phases of the software life cycle. Quality factor require-

ments are specified during the concept formulation phase, and quality ratings are

estimated and predicted during the development phases. The effect of the presence or

absence of a particular quality factor is realized during the evaluation phase and during

the post-development phases after the product has been turned over to the user. Table

3.1-3 indicates the development phases where quality levels are determined for each

* quality factor and indicates the evaluation and post-development phases where the effect

of each quality factor is realized. Previous work had identified three development phases

where quality levels are determined. This has been expanded to five development phases:

Requirements Analysis, Preliminary Design, Detailed Design, Implementation, and Test
and Integration.

The degree of impact of poor quality determines the cost savings that can be expected if
a higher quality product is developed through the application of metrics. This potential

4 cost savings is reduced by the additional costs to apply the metrics and to develop the

higher quality product. The expected-cost-saved/cost-to-provide ratio for each quality

factor is rated as high, medium, or low in the right hand column of Table 3.1-3.

3.1.1.2 Relationships Between Software Quality Factors

Specifying more than one type of quality for a product can affect cost in a nonlinear
fashion. Relationships exist between quality factors--some are complementary while

others conflict. The impact of conflicting factors is that the cost-to-provide increases.

Table 3.1-4 shows the effect of a high degree of quality for one factor upon each of the
other factors. For example, reliability and correctness are complementary. If a high

degree of reliability is present, a high degree of correctness would also be expected; and

vice versa. Efficiency and reliability conflict. If a high degree of efficiency is present, a

low degree of reliability would be expected; and vice versa. Table 3.1-5 is a summary of

3-6

t6.2

us

4m..

0

0 0

E X X xCU'A

4.-G 0

4, 0

Vo E
LI

44

4z.-

- *

o7 -I I 1 I

--7
4e E

4~~% 1.. .* *. .- - ... 4 4Z.-

Table 3.1-4 Relationships Between Software Quality Factors

LEGEND:*4
IF A HIGH DEGREE OF QUALITY
IS PRESENT FOR ONE FACTOR,.r

.4.,THE DEGREE OF QUAUITY EXPECTED
FOR THE OTHER FACTOR IS:

uHIGH
A LOW

SOFTWARE BLANK uNONE OR DEPENDENT UPON
.4QUALITYAPLCTO

FACTORS C
0 uNEW OR MODIFIED

E I F N V ;v4

RELAILITY T A F L P T

MANAIAILT L_ I_ S I E

FLXIILs E_ A . V T I
I POTELT L I

A ~ LREUSABILITY 4- T I

UNERSEABILITY __ A S P P
EXRANDABILITY T L. 1. A. A E A

MAINTAINABILITY - --- --- -- L-- R

-8

A
..
E..

3-8 ~ .4'*q~

--

Table 3.1-5 Relationships Between Software Use and Quality Factors

oP

USAGE CATEGORY

OPERATION REVISION TRANSITION

QUAITY C R E I U S M V F P R I E

FACTORS 0 E F N S U A E L 0 E N X
R L F T A R I R E R U T P
R I I E D V N I X T S E A

SE 8 C G I I T F I A A R N
C I I R L V A 8 3 8 B 0 0
T L E I I A I A I I I P A
N I N T T I N B L L L E B
E T C Y Y I A I I I I R I
S Y Y L B L T T T A L
S I I I y y y I

- T L T IT
Y. I V, L Y'

USAGE T I
CATEGORY V "

OPERATION 4, A A '1&1 A& A I& A A I&

REVISION A& & 46 A A A A A .

TRANSITION A& A A A n, A A A A A A -

LEGEND:

IF A-HIGH DEGREE OF QUALITY IS PRESENT FOR ONE FACTOR, THE DEGREE
OF QUALITY EXPECTED FOR OTHER FACTORS OF A USAGE CATEGORY IS:

./ = HIGH

NEW OR OF MODIFIED

3-9

3-9 '"

;' ;..' '. £' " ,2 '2. *4."", ","" " . " ". %.d."," ... 4. . .. • ' • • " .",, • "•. "• * -. . . •.•* . .

*,%j- . '" -. , _ . h..
4
', , °. ". ". ~ * "**. "S*. " 4%". - .**'***"." " .- . S .,"" " ' ". . - ;" -. '." •" - ' -. ' % " "•

Table 3.1-4 and indicates the effect of each quality factor on the usage categories

(operation, revision, and transition). In general, the operation quality factors conflict

among themselves and conflict with the revision and transition quality factors; the

revision and transition factors do not conflict among themselves and are usually

synergistic. Table 3.1-6 provides a brief discussion of typical tradeoffs for conflicting

factors. The first entry explains the conflict between reliability and efficiency which was

noted in the example above for Table 3.1-4.

3.1.1.3 Software Quality Ratings

Quality ratings have been developed for eight of the thirteen quality factors. Table 3.1-7

shows the formulas which have been developed and an explanation of the terms. These

ratings are used in conjunction with a set of guidelines for specifying the quality level

required for a quality factor. Two new ratings were developed under this contract-the

ratings for survivability and expandability.

3.1.2 Software Quality Criteria

Previous analysis and evaluation had resulted in identification of twenty three quality

criteria. The investigation of software characteristics for distributed systems showed

that these criteria were also applicable to distributed systems. This investigation resulted

in the identification of a total of twenty-four quality criteria. Twelve criteria are new;

eleven of the previous criteria were revised and combined into seven criteria as discussed

below...

Figure 3.1-1 shows the criteria which are associated with each of the thirteen quality

factors. This figure is in the format of the software quality model which was depicted in

Figure 3.0-1. Table 3.1-8 also shows the criteria associated with each of the thirteen

quality factors; in addition, it indicates which relat "iships had been established by

-* previous analysis and evaluation (with an "x"), which relationships are new (with an " "),

and which criteria and factors are new (with an "*") or different (with an "**"). Table

3.1-9 provides definitions for each of the quality criteria and lists the related factors.

The criteria in the tables are listed in alphabetical order.

3-10

*******% ...-..-P....~->--..-2-.......................

Table 3.1-6 Typical Factor Tradeoffs

EFFICIENCY THE ADDITIONAL CODE REQUIRED TO PROVIDE ACCURACY AND
TO PERFORM ANOMALY MANAGEMENT USUALLY INCREASES RUN

* TOM AND REQUIRES ADDITIONAL STORAGE. y
REUIA131LITY _ _ _ _

VS THE GENERALITY REQUIRED FOR FLEXIBLE. REUSABLE, AND
REUSAILITY EXPANDABLE SOFTWARE USUALLY INCREASES THE DIFFICULTY OF

EUSABILITY PROVIDING ACCURACY AND PERFORMING ANOMALY
MANAGEMENT FOR SPECIFIC CASES.

THE ADDITIONAL CODE AND PROCESSING REQUIRED TO CONTROL
INTEGRITY ACCESS TO CODE OR DATA USUALLY LENGTHENS RUN TIME AND

REQUIRES ADDITIONAL STORAGE.

THE ADDITIONAL CODE AND PROCESS IG REQUIRED TO EASE AN
SAIUY OPERATOR*S TASK OR TO PROVIDE MORE USABLE OUTPUT

* USUALLY INCREASE RUNTIME AND REQUIRE ADDITIONAL
STORAGE.

SURVVANITY THE ADDITIONAL CODE AND PROCESSING REQUIRED FOR
MODULAR. RECONFIGURABLE. ANOMALY TOLERANT SOFTWARE

a RESULTS IN LESS EFFICIENT OPERATION.

USING MODULAR. VISIBLE, SELF-OESCRIPTIVE CODE TO INCREASE
MAINTAINABILITY MAINTAINABILITY AND VERIFIABU.ITY USUALLY INCREASES

EFFICIENCY VERFIABI.ITY OVERHEAD AND RESULTS IN LESS EFFICIENT OPERATION. CODE
4 VS bWHICH IS OPTIMIIZED FOR EFFICIENCY POSES PROBLEMS T0 THE
* TESTER & MAINTAINER.

~INUmurvI THE GENERALITY REQUIRED FOR FLEXIBLE AND REUSABLE
REUSABILITY SOFTWARE INCREASES OVERHEAD AND DECREASES EFFICIENCY.

THE USE OF CODE OPTIMIZED FOR EFFICIENCY USUALLY
PORTABILITY DECREASES PORTABILITY.

THE OVERHEAD FOR CONVERSION FROM STANDARD DATA
* REPRESENTATIONS AND FOR THE USE OF STANDARD INTERFACE

ROUTINES DECREASES OPE RATING EFFICIENCY.

EXPAOASITY THE USE OF MODULAR. GENERAL SOFTWARE USUALLY DECREASES
EXPANRNITY OPERATING EFFICIENCY.

SUVVBLT THE DISTRIBUTEDNESS REQUIRED FOR SURVIVABLE SOFTWARE
SURVVABIITY INCREASES THE RISK OF UNAUTHORIZED ACCESS.

FLEXIBILITY THE GENERALITY REQUIRED FOR FLEXIBLE AND REUSABLE
RIUSABILITY SOFTWARE INCRASES THE RISK OF UNAUTHORIZED ACCESS.

INESIT COUPLED SYSTEM HAVE MORE AVENUES OF ACCESS, DIFFERENT

INTROMASIITYUSERS. AND COMMON DATA REPRESENTATIONS; THE Y OFTEN
I~aITYSHN DATA AND CODE. THESE INCREASE THE POTENTIAL FOR

ACCIDENTAL OR DELIBERATE ACCESS OF SENSITIVE DATA-

THE GENERALITY REQUIRED FOR EXPANDABLE SOFTWARE '

* EXANDABILITY INCREASES THE RISK OF UNAUTHORIZED ACCESS.%

SURVVAORY LEXIINLITY THE RECONFIGURABILITY REQUIRED FOR SURVIVABLE SOFTWARE
VS REUSABILITY REDUCES ITS FLEXIBII. PORTABILITY, AND REUSABILITY

3-11

K % ". . .. - -. " - .•

z6- -727 I
Table 3.1-7 Software Quality Ratings

Quality Factor Rating Explanation

Correctness
Reliability 1 - Number of Errors In Terms Of The Number Of

Number of Lines Errors That Occur After
--------------- Of Code The Start Of Formal Testing

Efficiency
---------------- ---------------

Usability
SSurvivability' 1- Number of Errors In Terms Of The Number Of

Words Of Object Survivability Related Errors
Code That Occur After the Start of

Formal Testing

Maintainability 1 - 0.1 (Average Num- In Terms Of Average Effort
ber of Man-Days To Locate and Fix An Error
To Fix)

-------------- - - -

Verifiability* **

Flexibility 1 - 0.05 (Average Num- In Terms Of Average Effort.
ber of Man-Days To Extend Software To Satisfy
To Change) Other Requirements

Portability 1 - Effort To Transport In Terms Of Effort To Convert
Effort to Implement Software For Use In Another

" Environment And The Original , "r
Implementation Effort ---

Reusability 1 Effort TO Convert In Terms Of Effort To ConvertEffort To Develop Software For Use In Another
Application And The Original

-- - - -- -- --- Development Effort

Interoperability 1 - Effort To Couple In Terms Of Effort To Couple
To Couple Software And The Original

1 - + Effort to Develop Development Effort

Expandability' 1 - Effort To Expand In Terms Of Effort To Increase
Effort To Develop Software Capability/Perform-

and and Original Develop-
ment Effort

- New or Modified
"., ** . None Development

.. ,.

SI 3-12

.• S*.. *C - - .* ** %S .q. . ',. , .,, . . .
•

.R. .. ,

Z-77-7 WT i~ ~ ~ \ ~ - - I-NiW'.* -

COSEi~s

4.9INK n

gEFFICIENCY

VIRTUALITYSYSTEMACCESSISIUTY

O.4. cOMIUJUICATVENESS VSLITY TRAINING

AUTONOMY STRWJTEONES ANMY MANAGEMENT MOO4JLARITY *CO4FIGURASILIT

CONOINIS MOO#JLARIY VNSINMF SELF-OESCRFNIESS COSSENCY SW.1PUOT

Figure 3.1-1 Relationship of Criteria to Software Quality Factors

3-13

VE~dF4&Lff

M4A4 FM MTIEESSEPC

M7 FS,

FIEXMI.T

SELF-ESCRPTIVNESSSM11P4I.

S..ABIT

INEEDNEMDLRTYSL-ECIWNS

MUJA*4T

3-14-

.2..,

Table 3.14 Software Quality Factors and Criteria

SOFTWARE SOFTWARE SOFTWARE
OPERATION REVISION TRANSITION

QUALITY FACTOR - -- - -- - - -

(USE= =)ETE C ft ft I U S M V F P ft I ft
o t F N S U A Ef L 0 ft N x

It L F T A : I E t f U T P
N I X S ft A

E A C G T F I A A R N
C S tL V A IS S S 0 0
T II f I II A 4 A I 7 P AQUALITY N L N T B 8 N L L L Et SCRITERIA ft I C Y Y A I I I I f

(SOFTWARE S T Y L 9 T A L
I II R

s v I T v v y a.
SOiAET L T I TSFREl v I

* RE011TED) y T
v

" ACCURACY x

_ ANOMALY MANAGEMENT" X ED

, AUGMENTABIUTY*"

, AUTONOMY*

* COMMONALITY" x

S COMPLETENESS x

0 CONCISENESS x
- CONSISTENCY x x x

* DISTRIBUTEDNESS* []

" EFFECTIVENESS" x

0 GENERALITY x x [
- INDEPENDENCE" x x

. MODULARITY x x x x x x [7

* OPERABILITY x
e" RECONFIGURABILITY' ...]

0 SELF-DESCRIPTIVENESS x x x x x
9 SIMPUCITY [] x x xn El "Dn:

• SPECIFICITY* W] [] [.,

& SYSTEM ACCESSIBILITY** x

* TRACEABILITY x

0 TRAINING x ,

0 VIRTUALITY* ED C] E,
0 VISIBILITY" E] E [x

EW NEW NEW RELArOKSHIP
D 'IFFERENT X . PREVIOUSLY ESTASLISHED RELATIONSHIP

3-15

I"* ' ".-, ' . " . , " . "' , " . " . •". . "-- - -"-- - - - - - " . C- ." . ., ., , " , " , . ,

. . o . ,.. .° .oO, ,,. .. • . . -, .. , . % o o. % % -. . . .o, •. - ., . . - , -,o. ' - .- ° -.

1.0~

5 1
* 4 0

xx

0 0

3-1

0 **

* *lit

a . 1 ~a . 1 0

Cca0 0 0 OS 000 0 0

0 00 00

z au w £

!7 ~ ~ 2 >
9.~~~~ jzo0 o

! ~ ~ 0 Z. 4L22w

t:j z

0 0a

w -
Ct.z - Zw wIb. Ig Z

IT 0 0 00 00, 0z 0 0~'

:1 .2 ~V -A a'~ 0C a

*z

* 0 0 0 0 0 0 0 x

-xx 0

3-1-

A. CA AA' J A t I

3.1.2.1 Revised Criteria

Of the twenty three previously identified criteria, twelve remain identical, ten were

revised and consolidated into seven criteria with new names, and one was changed to a

quality factor (expandability - formerly a criterion of flexibility). The revised criteria are

discussed below.

Error tolerance was changed to the more genera) term "anomaly management" which

includes management of the system configuration under non-nominal conditions - a
common task for distributed system software. Execution efficiency and storage ef-

ficiency were consolidated to the more general term effectiveness, meaning minimum

utilization of resources in performing functions. This enables the inclusion of operator

time in the measure of efficiency. Access control and access audit were consolidated into

one term--accessibility. Instrumentation was changed to the more inclusive term

visibility. This enables consideration of tools and procedures used to monitor the status of

the development process in addition to tools for monitoring the status of product

operation.

Software system independence and machine independence were replaced by the term

independence. This enables consideration of modular and functional independence.
Communications commonality and data commonality were combined in the term corn-

monality. Expandability was changed from a criterion of flexibility to a quality factor--

providing the capability to consider system growth at the quality factor level.

3.1.2.2 New Criteria

Five new criteria were identified during the investigation of software characteristics for

distributed systems as indicated in Table 3.1-8: autonomy, distributedness, reconfigur-

ability, specificity, and virtuality. Although these new criteria were identified through

concerns for distributed systems, specificity and virtuality may also be applicable to

uniprocessor systems. Reconfigurability, distributedness, and autonomy are associated

only with the quality factor survivability and may be applicable to very few uniprocessor

systems.

3-18

" -" ,: ".-''-- -" . -. -, . • • .- . "- " "" " "- ." . . .- "
" " Y% """. ,""" - """. ,""" - "" ." . '. ."""'" ."" " " . " . ". " ' ,"" '. "" . ' ' '' ' .-. ' '' e ,

I I, , ~ ~ ~- : .; --- :- ' .- *-, . - + . -.

3.1.2.3 Effect of Criteria on Software Quality Factors

The effect of each criterion on each quality factor was evaluated; the results are

summarized in Table 3.1-10. The criteria indicating the presence of a quality factor are

indicated with an "X". If the existence of the attributes char3cterized by each criterion

positively impacts a factor, an "A" was placed in the matrix. If the existence of the

attributes characterized by each criterion negatively impacts a factor, 3n "A" was placed

in the matrix. If there was no relationship between the criterion and the quality factor or

I- if the relationship was highly application-dependent, the matrix was left blank. These

criteria-to-factor relationships are the basis for the factor-to-factor relationships dis-

cussed in Section 3.1.1.

3.1.3 Software Quality Metrics

Previous analysis and evaluation had resulted in the identification of thirty nine metrics.

Eleven new metrics were identified under this contract. These metrics are:
...

o AM.6 Communications Errors Checklist

o AM.7 Node/Communications Failures Checklist

o AG.3 Channel Extensibility Measure

o AG.A Design Extensibility Checklist
S o AU.l Interface Complexity Measure

o AU.2 Self-Sufficiency Checklist

o DI. I Design Structure Checklist

o MO.3 Modular Design Measure

o RE. I Restructure Checklist

o SP. A Scope of Function Measure

o VR. I System/Data Independence Checklist

The complete list of metrics is shown in Table 3.1-I. Some of the metric names were

revised as was shown in Table 2.2-2.

3-19
% N..

% ..'.'- 3P . ~ 9.*.9 - 9 "".. -
* 1''. 9. -

Table 3.1 -10 Effect of Criteria on Software Quality Factors

SOFTWARE SOFTWARE SOFTWARE
OPERATION REVISION TRANSITION

QUALITY FACTOR CNEIUS MVFPf

0 E F N S U A E L 0 E N X
ft L F T A R t E R U T P
it I I E S V N I X T S E A
I C G I T F I A A R N

C I ft L V A I a
T A I A I I P A

N ULT ATR
N L N T TIN

I L I. L E
E I C y Y A I I I I R I
S T y L I L T T T A L
S V I I I y v y B I

T L T I T

QUSALITY CRITERIA ~

- * ACCURACY xA z\--
SANOMALY MANAGEMENT"* A X A A X

0AUGMENTABILITY* A x

0 AUTONOMY* x

1 0COMMONALITY" x

* OMUNCAIVNESA x A! A A- ----
0COMPLETENESS xAAA
*CONCISENESS A AxA
*CONSISTENCY x A A
DISTRIBUTEDNESS A _x
*EFFECTIVENESS" XAA A

* GENERALITY A A A x x A x
* INDEPENDENCE" A A , x A
" MODULARITY A x x x x x x x x
" OPERABILITY A _x

0 RCOFIURBIZl' A x AA A
* SELF-DESCRIPTIVENESS A x x x x x A
0 SIMPLICITY x XA x x x x x

0 SPECIFICITY* x AAA x x

0 SYSTEM ACCESSIBILITY" A _x AZA
* TRACEABILITY xA A A A
* TRAINING XA

0 VIRTUALITY* x x x
* VISIBILITY" A x x x

-NEW A-POSITIVE CORRELATION X BASIC ASSOCIATION

P.MOOIFIEO NEGATIVE CORRELATION

* 3-20

1.1

TABLE 3.1-11. METRIC TABLES SUMMARY

CRITERIA ACRONY METRICS

ACCURACY AY.1 ACCURACY CHECKLIST

ANOMALY MANAGEMENT AMA1 ERROR TOLERANCE/CONTROL CHECKLIST
AM.2 IMPROPER INPUT DATA CHECKLIST
AM.3 COMPUTATIONAL FAILURES CHECKLIST
AM.4 HARDWARE FAULTS CHECKLIST
AM.5 DEVICE ERRORS CHECKLIST
AM.6* COMMUNICATION ERRORS CHECKLIST

* '"AM.7* NODE/COMMUNICATIONS FAILURES
CHECKLIST

AUGMENTABILITY AG.I DATA STORAGE EXPANSION MEASURE
AG.2 COMPUTATION EXTENSIBILITY MEASURE
AG.3* CHANNEL EXTENSIBILITY MEASURE
AG.4* DESIGN EXTENSIBILITY CHECKLIST

AUTONOMY* AU.I* INTERFACE COMPLEXIBILITY MEASURE
AU.2* SELF-SUFFICIENCY CHECKLIST

- COMMONALITY CL.I COMMUNICATIONS COMMONALITY CHECK-
LIST

CL.2 DATA COMMONALITY CHECKLIST

COMMUNICATIVENESS CM.I USER INPUT INTERFACE MEASURE
CM.2 USER OUTPUT INTERFACE MEASURE

COMPLETENESS CP.I COMPLETENESS CHECKLIST

CONCISENESS CO. 1 HALSTEAD'S MEASURE

" CONSISTENCY CS.I PROCEDURE CONSISTENCY MEASURE
CS.2 DATA CONSISTENCY MEASURE - -

DISTRIBUTEDNESS* DI.I* DESIGN STRUCTURE CHECKLIST

EFFECTIVENESS EF.I PERFORMANCE REQUIREMENTS L
EF.2 ITERATIVE PROCESSING EFFICIENCY

MEASURE
EF.3 DATA USAGE EFFICIENCY MEASURE
EF.4 STORAGE EFFICIENCY MEASURE

= New

3-21

*'. .. , . - , , - , - . --.. - - , . . - . - .k-,' , " ' o '. ,a /" ,' . .",w~' , , .' .' ,". ' _ .' .' . . - . '. ' • . . - .. -.. . _ " . - .- .- - • -.. . " . . • " - . - . . . - .

TABLE 3.1-11. METRIC TABLES SUMMARY (Continued)

- CRITERIA METRICS

GENERALITY GE.1 MODULE REFERENCE BY OTHER MODULES
GE.2 IMPLEMENTATION FOR GENERALITY

* CHECKLIST

INDEPENDENCE ID.A SOFTWARE SYSTEM INDEPENDENCE
MEASURE

ID.2 MACHINE INDEPENDENCE MEASURE
., MODULARITY MO. I INDEPENDENCE/STABILITY MEASURE

MO.2 MODULAR IMPLEMENTATION MEASURE
MO.3* MODULAR DESIGN MEASURE

OPERABILITY OP.1 OPERABILITY CHECKLIST

RECONFIGURABILITY* RE.I * RESTRUCTURE CHECKLIST

SELF-DESCRIPTIVENESS SD.I QUANTITY OF COMMENTS
SD.2 EFFECTIVENESS OF COMMENTS MEASURE
SD.3 DESCRIPTIVENESS OF LANGUAGE MEASURE

SIMPLICITY S1.1 DESIGN STRUCTURE MEASURE
SI.2 STRUCTURED LANGUAGE OR PRE-

PROCESSOR
S.3 DATA AND CONTROL FLOW COMPLEXITY

* MEASURE -
SI.4 CODING SIMPLICITY MEASURE

SPECIFICITY* SPA* SCOPE OF FUNCTION MEASURE

SYSTEM ACCESSIBILITY SA.I ACCESS CONTROL CHECKLIST

.' SA.2 ACCESS AUDIT CHECKLIST

TRACEABILITY TR.I CROSS REFERENCE

TRAINING TN. 1 TRAINING CHECKLIST

VIRTUALITY* VR.I * SYSTEM/DATA INDEPENDENCE CHECKLIST

VISIBILITY VS. I MODULE TESTING MEASURE
VS.2 INTEGRATION TESTING MEASURE
VS.3 SYSTEM TESTING MEASURE

• * New

-" 3-22

4-- " ' .-.-. " •" . " " - .' -". " """ " . - .- '"" - -.-. - '' '" ' ' ' ".", ' -" .*. -' ." ,", . '''" " ' .. M' .''''' " " " ,"- ".'- '"'-". ':.*''. -•-''- "-•-,- " - - "- .' -"-v""..' -,' ..,-- ',.*.,,....*. - .-"-

3.2 SYSTEM QUALITY FRAMEWORK

N Part of the task of the acquisition manager is to analyze system quality requirements and .

v to determine the suballocation of those quality requirements to the software subsystem.

To aid in this task for distributed system applications a set of system-level quality factors
was defined, the corresponding quality criteria were identified, and a correspondence

between distributed system quality and distributed system software quality was de-

veloped. The following paragraphs discuss the factors, the criteria, and their corres-
pondence with software quality. There is a surface similarity among many of the
system-level factors and criteria and the software factors and criteria. This is
understandable since the software is viewed as a complete subsystem, and most of the
factors and criteria are general. However, the correspondence developed between system

and software quality factors illustrates the distinction between the system view and the
software view and emphasizes the uniqueness of each factor.

3.2.1 System Quality Factors

Sixteen system quality factors have been identified. Table 3.2-1 lists these quality t
factors and poses a question which indicates the relevancy of each factor to a user. -

Previous analysis and evaluation of software quality factors resulted in grouping factors
* into three categories: product operation, product revision, and product transition. This -

* scheme was also used to group system quality factors as it emphasizes the user's view of
system life-cycle management. Table 3.2-2 provides definitions for all of the system
quality factors.

Twelve of the sixteen system quality factors are similar to the software quality factors
(see Section 3.1). Four of the quality factors are unique to systems or complete
subsystems: availability, safety, transportability, and interchangeability. Availability

requirements are usually allocated down to the computational subsystem as a whole
including the software. Safety requirements are satisfied through design and construction
and throw.' additional system functions, sometimes supported by software. Transport-
ability refers to the physical relocation of a system, and interchangeability refers to the
transfer of a system component for use in another configuration. Both transportability
and interchangeability are especially applicable to fielded military systems. The software
factor portability is similar in nature to these two factors.

3-23

*... * . .* .. * --. *-..--. ... '.* * . * 2~.4.. * .4 .'.- * 64

.

" -. c'';q- "' -J *: 'l "- - -'.- - -' --. ,, * ., , . ." . b
NY, "b

-J

Table 3.2-1 System Quality Factor Identification

Activity User Concern Quality Factor

DOES IT DO WHAT ITS SUPPOSED TO? CORRECTNESS

WHAT CONFIDENCE CAN BE PLACED
IN WHAT IT DOES? RELIABIUITY

HOW WELL DOES IT UTILIZE THE

RESOURCES? EFFICIENCY -

HOW SECURE IS IT? INTEGRITY
PRODUC'

OPERATION HOW EASY is IT To USE? USABILITY

HOW MUCH OF THE TIME CAN IT BE
USED? AVAILABI~LY 3

HOW SAFE IS IT? SAFETY

HOW WELL WILL IT PERFORM UNDER -I

ADVERSE CONDITIONS? SURVIVABIUITY

HOW EASILY CAN IT BE RELOCATED? TRANSPORTABILITY

CAN IT BE REPAIRED? MAINTAINABILITY

PRODUCTO CAN ITS OPERATION AND
REIIN PERFORMANCE BE VERIFIED?VEIABLT

CAN IT BE CHANGED? FLEXIBILITY

CAN IT BE USED IN ANOTHER INTERCHANGE-
ENVIRONMENT? ABILITY

CAN IT BE USED IN ANOTHER
PRODUCT APPLICATION? REUSABILITY

TRANSTON CAN IT BE INTERFACED WITH

ANOTHER SYSTEM? INTEROPERABILITY

CAN ITS CAPABILITY OR PERFORMANCE

BE EXPANDED OR UPGRADED? EXPANDABILITY

.-o.

3-24

-- .

4Table 3.2 System Quality Factor Definitions e

CORRETNESS EXTENT TO WHICH THE SYSTEM SATISFIES

ISSPECIFICATIONS AND FULFILLS THE
USER'S MISSION OBJECTIVES.

RELIABILITY PROBABILITY THAT THE SYSTEM WILL
PERFORM ITS LOGICAL OPERATIONS IN
THE SPECIFIED ENVIRONMENT WITHOUT
FAILURE.

EFFICIENCY DEGREE OF UTILIZATION OF RESOURCES IN
PERFORMING FUNCTIONS.

INTEGRITY EXTENT TO WHICH UNAUTHORIZED
ACCESS TO THE SYSTEM OR SYTEM
INFORMATION CAN BE CONTROLLED.

OPERATION USABILITY EFFORT FOR TRAINING AND SYSTEM
OPERATION.

AVAILABILITY PORTION OF THE TOTAL OPERATIONAL
TIME THAT THE SYSTEM PERFORMS OR
SUPPORTS CRITICAL FUNCTIONS.

A-SAFETY PROBABILITY THAT THE SYSTEM WILL NOT
CAUSE DAMAGE OR PHYSICAL INJURY.

A-SURVIVABI~LY PROBABILITY THAT THE SYSTEM WILL
CONTINUE TO PERFORM OR SUPPORT
CRMCAL FUNCTIONS WHEN A PORTION
OF THE SYSTEM IS INOPERABLE.

TRANSPORTABIUITY EFFORT TO PHYSICALLY RELOCATE THE
____ ___ __ ____ ___ ___ ___SYSTEM.

MAINTAINABILITY AVERAGE EFFORT TO LOCATE AND FIX A
SYSTEM FAILURE.

REIIN VERIFIABILITY EFFORT TO VERIFY THE SPECIFIED SYSTEM
REVISIONOPERATION AND PERFORMANCE.

FLEXIBILITY EFFORT TO EXTEND THE SYSTEM MISSIONS
_________ _____________TO SATISFY OTHER REQUIREMENTS.

INTERCHANGEABILITY EFFORT TO TRANSFER A SYSTEM
COMPONENT FOR USE IN ANOTHER
OPERATING ENVIRONMENT (E.G.,
CONFIGURATION).

REUSABILITY EFFORT TO CONVERT A SYSTEM
COMPONENT FOR USE IN ANOTHER

TRANSITON APPLICATION A

INTEROPERABILITY EFFORT REQUIRED TO COUPLE THE
SYSTEM WITH ANOTHER SYSTEM.

EXPANDABIUITY EFFORT TO INCREASE SYSTEM CAPABILITY
OR PERFORMANCE - ENHANCE CURRENT
FUNCTIONS OR ADD NEW FUNCTIONS.

3-25

3.2.2 System Quality Criteria

Thirty two quality criteria have been identified for distributed systems as illustrated in

Figure 3.2-1 and Table 3.2-3. Twenty-four of the criteria are the same criteria as those

identified for distributed system software. Eight are peculiar to distributed systems:

self -containedness, homogeneity, compliance, validity, clarity, comprehensibility, sup-

portability, and compatibility.

3.2.3 System Quality and Software Quality Correspondence

The following paragraphs discuss the software quality factors which are required if a high

quality rating has been specified for one of the system quality factors. These4

relationships aid the acquisition manager in the allocation of system quality requirements

to the software subsystem.

The discussions may also aid the acquisition manager in prioritizing or weighting the

software quality criteria. For example, the discussion of system survivability points out

the importance of anomaly management in ensuring system survivability; this in turn

places a large emphasis on the anomaly management criterion of the software quality

factor survivability. Another example is in the discussion of system reusability. A high

quality rating for system reusability implies software reusability, flexibility, and yeri-

fiability. These three software quality factors have three criteria in common: modular-

ity, self -descriptiveness, and simplicity. This would place added emphasis on these
criteria over the other criteria of these three quality factors.

Table 3.2-4 summarizes the correspondence between system and software quality factors.

A positive relationship is indicated with an (x. A relationship that is application
dependent is indicated with a G-).

Highi system correctness implies both high software correctness and high software

verif iability. The ability to verify software operation and performance against the

specifications and mission objectives aids in ensuring the correctness of the overall

system.

3-26

V ..

ANOMALY MANAGEMENT ACCURACY cONSWSENCY SCY

EFFICIENcy

C FF ENSS

USSA

VITULTY ACESITLT

* CONSISTENCY SWOY ANOMALY MANAGEMENT MOUAIY RECONFIGURABULTY

ss]S

AUTONOY OSTR1'EONES ANOMLY MOAINAEMNEN MNODLRTY RCOFGUAIL

Figure 3.2-1 Relationship of Criteria to System Quality Factors %

3-27

4%%

J* la0&e
.............

C'.e

.4, UPPOTMITY C#OSIESS MODILARW V~IWUT SEL.OICLWUN ~S-IS1IWNCY LAI S WU fY -4

FLXIM

CLAC
1,-EOMINIS MDPEDIa

COA.Af

EXPN *K

.4rArY GNRUTY VMA Y AGErBLr LW IIF

Fiue321Rltosi o rtrat ytmQalt atr Cniud

*3-2

E~A%

-WI'.. J2
" 1

Table 3.2-3 Distributed System Quality Factors and Criteria

SYMSYSTM SYSTEM
"'"o AT rime TANSITOQ.UAY ,l - v ,

(WBNETD) c m AS ST MV ISI
0~~~ X V A A. E

It L F TA A f RA I t A T UT P
it I I 1 1 E V N N I X E S E A
a A C 6 L A. 1 ; T PI RAN M
C SIIa. A V V P A 1 0 0
T I 1 I A 0 I A I H1 I PA

QUALM NN I2 L A L E ,
C1'EEA I g v ft A. I T A i I N I I

4 (YSTMON S T VY L A 7 L T I TA .
SYTEMA S vT a v v a IY I

V T I L T A I T

OUSEL I T 0 L

T V L T

T

" TRACEABILITY X

CONSISTENCY X X X X

.4 BCOMPLETENESS X
S• COMPLIANCE x

" VALIDITY X X
OCLARITY X X X X X
" SPECFICITY X X X
.SIMPICITY x x x x x x x x

*ANOMALY MANAGEMENT X X X X

* EFFECTIVENESS X
* ACCESSIBIULTY X
S VIRTUALITY X X X
0 VISIBIILTY X X X X

" COMPREHENSIBILITY x
" TRAINING x XV, S COMMUNICATIVENESSX

0OPERABILITY X X."
* MODULARITY X X X X X X X X -
0 RECONFIGURABIUTY X X

S DISTRIKUTEDNESS X
0 AUTONOMY X
* SELF-CONTAINEDNESS X
* CONCISENESS X -"
" SUPPORTABILITY X

" SELF-DESCRIPTIVENESS XX X x* ENRLIYX X X

0 HOMOGENEITY X
, 0 INDEPENDENCE X ,

S AUGMENTABILITY X
i COMPATIBILITY X X

* COMMONALITY X

3-29

• .,.., ,,.... ,'..,,...-,'_..., :%...-...... ..-..-.... .- '."-"-. S - .- '.- . . -..- ;_" .* -i -" ' '. " , - . . " , ". ', . , " . .% 1 -%

.....] .1 ,., . . -' .. . I, .% ; " ..

4.. ..

Table 3.24 Relationship between System and Software Factors

ONERATION REVIS TRANSITION

SOFTWAK_
QuALITY CRI I US M V F PR IE
FACTORS 0 P N S A I L 0 N

It T I Rt I RtU T P
tN I XT S A

C I A
C I 1 R L AI0

SI I A I A I I 1 P A
N N 9 L L L E"
I I C V V I A I

SWS VL T T A L
S I I I v Y v B I

QUALITY T L T I T
FACTORS v I V L Y

T
v T

* CORRECTNESS X X

* RELIABILITY X X X

• EFFICIENCY X X

e INTEGRITY X -. ,.

A 0 USABILITY - X :--
T

0 0 AVAILABILITY X X X

e SAFETY X X X X

. 0 SURVIVABILITY X X X

* TRANSPORTABILITY X X X IX I- '

s * MAINTAINABILITY X X
V

s 0 VERIFIABIUTY X X X

0
N 0 FLEXIBILITY X X

T * INTERCHANGEABILITY X X X

A
N • REUSABILITY X X x

T 0 INTEROPERABILITY - X X

* 0
N * EXPANDABILITY X X X

X POSITIVE RELATIONSHIP

- APPLICATION DEPENDENT

4

"" ~3- 30 ""'

'.e_ -'" '...'" ' .'''..-.' "..' . "'-''...'"'.- . "...- ",. ". .-. " "....... ."... " "".. -"" .
' " "" '' . ' "''''''''" - '' " "''""'.' . '. '. ' '' " " '. '" '. %" " ", " "- '- - " "- " '. ''- * '. '. . .S'. " '. ._5'

:% ' ; - '.'.,, -.- -'''..'''.. ;" ." ','- '" . -" . ." . . .",..'. " .. , ,: ,. - ".. .,.. ,, . . ,,.,.- " '.' ..

LT .. ----- --,.--: , . ------ 9, ..-I

High system reliability implies high software reliability, correctness, and integrity. Both

software reliability and software correctness contribute to the ability of the system to

perform intended functions. High software integrity insures that system reliability will
not be adversely effected by accidental or deliberate unauthorized access to the software

or the data.

High system efficiency implies both high software efficiency and high software usability.
Software usability directly affects operator effectiveness and efficiency; and the system

operator is a factor in the measure of system ef ficiency.

*High system integrity implies high software integrity. In most applications system

integrity is dependent upon the software and continued software functioning. In these

applications software survivability would also impact system integrity.

High system usability implies high software usability. In applications where accuracy and

precision affect the amount of time and effort to operate the system, the quality criteria

accuracy would also be emphasized. (Accuracy is an attribute of the quality factor

reliability.)

High system availability implies high software reliability, survivability, and maintain-

ability. High quality ratings for these factors ensure that the system will seldom fail,
that critical functions will continue to be performed in the event of a failure, and that the

fault will be quickly corrected.

High system safety implies high software correctness, reliability, integrity, and veri-

fiability. High ratings for these factors ensure that the system will perform as specified,

that it will seldom fail, and that it is secure from unauthorized access.

High system survivability implies redundancy of components and communication paths and

implies complex anomaly management. Complex anomaly management places emphasis

on high software survivability. Emphasis is also placed on high software interoperability

for redundancy and increased communications and, for networks with a variety of users,

on high software integrity because of the increased vulnerability to unauthorized access.

3-31

V*K i y. .. *

w. 7

High system transportabilt implies low power, light weight, and compactness. These

result in constraints on the computing system such as: limited storage; emphasis on

firmware rather than software; limited facilities for data entry and display; and wireless

communication. These constraints place emphasis on the software quality factors of

efficiency, integrity, and usability. Maintenance costs for the software of a transportable

system would naturally be high. This in turn places emphasis on the software quality

factor reliability to reduce the probability of failure.

High system maintainability is enhanced by software which is easily maintainable and by

software which aids in the detection and isolation of faults. This places emphasis on high

software maintainability and on high software survivability to continue fault detection

and isolation functions even when a portion of the system is inoperable.

High system verifiability implies component modularity, function modularity, fault

isolation, high visibility of system operation through instrumentation and system displays,

and diagnostic aids such as self-test capabilities. This places emphasis on high software

verifiability and high software maintainability. Also, high software survivability would

enable functions such as instrumentation, displays, and self-test to continue when a -

portion of the system is inoperable.

High system flexibility implies modular system components and generality of component

functions. This requires flexible software which is both modular and general and

emphasizes verification of changes. In addition to high flexibility and verifiability, high
integrity would also be emphasized in instances where modification of functions, missions,

or data could possibly compromise security.

High system interchangeability implies that a family of systems (or subsystems) has

components which are similar in function and which may be substituted for each other.

This implies that there may be a need to reuse software from system to system (high

reusability), to transfer software to another system configuration (high portability), or to

modify software missions, functions, or data (high flexibility).

High system reusability implies modularity of components and modularity and specificity

of functions. This eases the task of selection and removal for reuse. It also implies that

functions and components are general enough to be tailored to a new application. This

3-32

. 2.

-. :7 . . --

places emphasis on high software reusability, on high software flexibility to accommodate

changes, and on high software verifiability to test changes.

High system interoperability implies commonality of interface protocols, routines, and

data representations. It also implies compatibility of interface equipment. This places

emphasis on the high interoperability of the software and the ability to reuse the software

* on interfacing systems (high reusability). For some applications there may also be a need

to transfer software to an interfacing system (portability).

High system expandability implies generality and modularity of components and functions

and implies spare system capacity. This emphasizes high software expandability, high

software flexibility to incorporate enhancements and new functions, and high software

verifiability to test changes. For a system which is capacity limited, high software

efficiency would be emphasized.

3.-.3
a..•

1 -~

• -:'.. i.' '2. '.",'" ',:°' .71? "..-2" .' ,'i-'2.': ":. ?'? " 'L2"';.' "d i:'?':' ' '? ":''?i '. '?:''''"'" '?'?' '."22' : "i''i''i''?' 'i:'i?''."i""?2

4.0
TRANSITIONAL STUDY

. This section describes the software quality framework elements which were proposed but

.- dropped from the framework. One quality factor was dropped. Six quality criteria were
dropped. No metrics were dropped; but 26 metric elements were dropped.

4.1 FACTORS STUDIED AND DROPPED

* The quality factor evolvability was proposed and dropped. Evolvability is defined as the

extent to which the software performance can be enhanced by the incorporation of new

technology (e.g., algorithm, compiler). The criteria associated with the quality factor

are: virtuality, generality, modularity, specificity, and simplicity.

Evolvability was dropped because of its similarity to expandability, and the definition of

expandability was modified to include evolvability.

4.2 CIfTERIA STUDIED AND DROPPED

Six quality criteria were studied and dropped: clarity, compatibility, compliance, . t

comprehensibility, supportability, and validity. The definitions of these criteria are as

follows.

" Clarity - those attributes of the software which provide non-

ambiguous descriptions of functions and implementations.

Compatibility - those attributes of the software which provide interface

protocols and routines that are appropriate to the interface

equipment and features.

Compliance those attributes of the software which promote implemen-

tations that conform to the requirements.

.Comprehensibility - those attributes of the software which enhance understand-

ing of the operation of the software.

4-I

...............-... -,

Supportability -those attributes of the software which provide for ease in

creation of new software versions (e.g., use of HOL, version

update scheme).

Validity -those attributes of the software which constrain implemen-

tations to a range of acceptable solutions.

These six criteria were dropped either because of their similarity to and overlap with
other criteria or because of lack of metrics and metric elements to support them.

4.3 METRICS STUDIED AND DROPPED

No metrics were dropped from the proposed framework, but twenty six metric elements
were studied and dropped. The following metric elements were dropped because of their
similarity or overlap with existing metric elements, because they were more applicable to

*2 the system than to the software, or because they were insufficiently defined. The metric

* elements are categorized by applicable criteria.

AUGMENTABILITY

Spare memory fraction

1-(bytes of memory used/total bytes available)

Spare timing (speed capacity)

Is operating system designed so that functions can easily be added or
expanded? P%

Are the software functions/modules designed so that the span of control
(effect) can be increased?

AUTONOMY

Atomicity: is each software transaction viewed by users and system as
V indivisible?

Built-in-testing.

4-2

U%

SIMPLICITY

Is there, in the code's comments or preamble, a self-contained functional flow

diagram (besides text)?

• Are upper and lower bounds for acceptable inputs specified?

Is the code apparently free of "tricky" code (code which uses little-known side-

effects of language features)?

Is the code structured, in the sense of clear flow of control and lack of go-

to's?

DISTRIBUTEDNESS

• Total number kilometers of communication links.

* Diameter: maximum over all nodes of minimum distance between each pair of

nodes.
N,...

• Number of nodes (processors).

"-'Number of links.

Parallelisability (Kuck's metric)

(Number of independent processors/lO log10 number of independent proces-

sors)

Average redundancy of processors

(total number of processors/number of independent processors addressed).
•N

RECONFIGURABILITY

. Nonstopability: do nodes run on nonstop processors (multiprocessor redundan-

cy with software control program for graceful degradation)?

1 . Dynamic backup: can a data base be dumped while it is being used?

4-" ~-3"-'

What fraction of functions can be relocated without alteration to other

processors?

* Does the system automatically detect if a node has gone of f-line?

F ile availability: what is the probability that at least one copy of a file

resides at a site which is accessible to all other sites?

SPECIFICITY

-~ . Determinism: are the same outputs always produced by the same inputs?

TRAINING

. Is a user disturbed, so as to be less effective, by: .5*

1) instability, 2) unpredictability, 3) lengthiness of delay, 4) cryptic and

artificially terse messages?

* Does the system have a "help" function to answer questions for confused

users?

VIRTUALITY

* Virtual memory: does the system use virtual addressing?

* Relational database: is the database management system relational in the

sense of E.F. Codd (Communications of. the ACM, February 1982, p. 109-117) *

-4-4

VALIDATION

5.1 VALIDATION OF QUALITY MODEL

Overview of Validation Effort

The two new quality factors, survivability and expandability, were selected for validation.
This selection enabled validation coverage of the majority of new framework elements:

100% of new factors, 100% of new criteria, 100% of new metrics, 78% of new metric
elements, 80% of new worksheet references, and 78% of new worksheet questions.

The basic steps performed in the validation ef fort were selecting appropriate projects and
modules, collecting metric data, collecting quality rating estimates, and analyzing and

correlating metric scores and quality rating values.

The validation approach of RADC-TR-77-369 was followed, wherever possible. But some

of the same problems were found as were reported in RADC-TR-77 -369 in which various

metrics could not be evaluated due to uniformity of development standards which did not
permit assessment of the correlation of these metrics with project quality data. (See

AMA4 and AM.5 in Table 5.3-1.)

The greatest difficulty in the validation effort was with the quality ratings against which

the metrics are to be validated. Quality ratings could only be obtained for factors and
V criteria at the project or system level, rather than for individual modules. Therefore, the

validation effort was necessarily restricted to the internal analysis of metric scores and
to the correlations of criteria scores (for criteria within survivability and expandability)
with criteria quality ratings from each project. Nevertheless, such correlations show a

positive relationship between quality ratings and metric scores, and thus support the

addition of the expandability and survivability quality factors to the software quality
framework. This result, and the fact that metrics could be successfully collected, also
supports the use of the quality metrics methodology with distributed computing systems.

5-1

S S So .

5.1.2 Selection of Projects for Validation

Four Boeing projects were selected for validation; E-3A, UDACS, B-I Avionics, and the

Morgantown Personal Rapid Transit (MPRT) system. Although interviews and preliminary

data collection had been conducted earlier on a number of other candidate projects, only

." these four projects were used for validation.

The four projects, described below, were selected on the basis of the following criteria:

Distributed computing is integral to design and operation

Documentation for the entire life-cycle is available

Project management and software engineering personnel are available for

interview
Survivability and Expandability are significant considerations in system design

- ":For reasons of confidentiality, these four projects, in a permuted order, are identified

throughout this final report only by the encrypted designations "A", "B", and "D".
.- °-"

E-3A
E-3A, the AWACS, Airborne Warning and Control System, is a high-capacity radar station

and command control station in a Boeing 707 airplane. E-3A software (the AOCP, "-
Airborne Operational Computer Program) resides in two embedded IBM 4PiCC2 comput-

ers. The dual 2.1 Mops/sec processors, hot spare arithmetic control units, 3 drums (400

Kwords each), II banks of 64K core, and 9 operator consoles are coupled by serial

channels through a hard-wired Interface Adapter Unit (which itself has 2 complete

* backups). Each processor has its own event-driven operating system. E-3A was developed .

for the USAF, and was modified to an interoperational NATO version. Software in 95%

." Jovial 3-73 and 5% assembly language.

UDACS
UDACS, the Universal Display and Control System, is an airborne radar station and

command control station in a U.S. Navy P-3 Orion airplane. Three AYK-14 computers

(off-the-shelf CDC 480's also used in the F14) and 4 operator stations are coupled through

a dual serial, polled, MIL-STD-1553A bus. Each operator station contains a CRT, 64

K-words memory, and Intel 8086 microprocessor, 96 software programmable switches,
5-,.

5-2

,,% ' , .. '..-.? ' -.'.." " -> . -.. -..... .-. -..-.. / , ... --- .',.- °- ,... .. . -. , .- . .- .--. .-6..-.%

~- "° *

4.°-

keyboard, and trackball. The highly reconfigurable programmable switches each display

12 characters of 12 x 20 pixels as a dense array of LED's built into buttons. 5000 lines of

PL/l make up the HOL code, and a ground support package targets CMS-2 to the 8086's.

The Royal New Zealand Airforce is the customer.

B-I Avionics

The B-I Avionics operational software resides in two offensive computers and one

defensive computer. The computers are linked to sensors, actuator, other computers, and

operator consoles through redundant serial buses (I megabit). The two offensive

computers are tightly coupled through a high speed processor link. Some redundant

., processing is performed, and a degraded mode of operation is possible in the event of

failure of one of the offensive computers. The offensive and defensive computers.' !

communicate via the redundant serial buses. The source code is written in Jovial 33B and

assembly language.

Morgantowrn (MPRT Phase-l)
The Morgantown operational software resides in two central computers and twelve station

computers. There are two computers at each location. The computers are configured in

two redundant strings which perform parallel, concurrent processing. Within each string,
one central computer communicates with one computer at each of the six stations through

2400 baud modems. The two computers at each location communicate with each other to
monitor for failures and to synchronize processing. The source code is written in ANSI

STD FORTRAN and assembly language.

5.1.3 Selection of Modules for Validation

. E-3A
Modules from E-3A were chosen as follows. One particular CPC was selected which
served a communications encoding function. This CPC was in a survivability-critical

application and was expected to go through several phases of expansion. Timing

.information was available for its performance. The modules within this CPC were highly

-, and intricately coupled to each other. All 12 modules in this CPC were selected for data

collection and analysis. Although they do not necessarily constitute a typical cross-

section of the entire system, they are typical of modules for which distributedness,

* survivability, and expandability are innate in the design.

5-3

. -, " " .' . ' ' .. '.. .'.. - ".- . . ." -% ° "-% . . . ". ". ". - . r . """ .'"" 2

. ,,.. ,,n, ,,,...,......'....'.~~~~~....-....... -........ .-. ,,, .'-.. .-.. ,- -. " .. - -. -. '"'.

UDACS,
Modules from UDACS were chosen as follows. One particular CPC was selected which

* performed a graphics function for data from nearly all the processors in the distributed

system. Survivability was reflected in this function as being able to be performed on

either of several processors. Expandability was critical, as new functionalities were

required to be shown in new display types. The modules in this CPC were highly
interconnected. The first 24 modules in this CPC, according to a complete but arbitrary

litnwere chosen for data collection and analysis.

B-1 Avionics

The B-I Avionics operational software consists of two programs - the Offensive Flight

Software (OPS) and the Defensive Flight Software (DFS). Modules were chosen from the
OPS for validation because this software is distributed between two processors; the DFS

resides in one processor. The OFS performs five major functions: navigation, weapon

delivery, controls and displays, test, and executive. The modules of the navigation
function were chosen for validation because a high percentage of JOVIAL was used and

because the functions performed are typical avionics functions.

Morgantown

The Morgantown operational software consists of four separate programs -Central

Application Program (CAP), Passenger Station Application Program (PSAP), Maintenance

Station Application Program (MSAP), and Executive (EXEC). The modules of CAP were

chosen to be used for validation because CAP performs a greater number of functions and

more general functions than either PSAP or MSAP and because more FORTRAN was used

in the CAP modules, by far, than in the modules of any other program. The major

functions performed by CAP modules are: command processing; data collection,

recording, and display; communications processing; operations management; and opera-

tions monitoring.

5-4

5.2 DATA COLLECTION

5.2.1 Metric Worksheets

Specific metric worksheets were developed to collect data for the factors survivability

and expandability. These worksheets, shown in Appendix C, list questions whose answers

enable computation of values for metric elements. The metric elements are then used to

compute metrics for all criteria within the software quality factors of expandability an,;

survivability. The questions are presented in logically related worksheet categories, iM

- order to conceptually simplify the data collection task. There are four consecutively

. -, numbered worksheets, one for each of the life-cycle phases in which data is collected:

• Metric Worksheet I Requirements Analysis/System Level

Metric Worksheet 2 Design/System Level

Metric Worksheet 3 Design/Module Level

Metric Worksheet 4 Source Code/Module Level

- Since there were four Boeing projects selected for analysis a total of 16 worksheets were

completed. The number of lines of code analyzed from each project (worksheet 4) were as
., follows:

Project Lines of Code

A 3407

B 8589

C 3166

D 2353

Total 17515

5.2.2 Quality Rating Questionnaires

A two-page questionnaire, shown in Appendix D, was developed to gather subjective

quality ratings for criteria and factors at the system level. For survivability, respondents -

were asked to rate the software for the system on a scale of 1 to 10 (ten highest)

according to 6 defined "attributes". Five of the attributes are the criteria within

S., 5-5

, - o% o " , " . ° . " . °. " • " ° - • • *o O ° . ° - " - . . % . ° ° - ' ° °".. ' .. . ° ° -4 , .. ' . . "

477

survivability, the sixth being survivability itself, although this is not stated on the

questionnaire form. This allows for two different values of the survivability rating to be

computed. First, the average of the 5 individual criteria ratings may be used. Second,

the survivability factor rating itself may be used.

For expandability, the rating questionnaire defines 7 attributes and solicits ratings on a I

to 10 scale. Six of the attributes are the criteria within expandability, and the seventh is

* expandability itself. In addition, the questionnaire asks for 2 estimates in terms of

manmonths of effort: effort to expand the software for this application and equivalent

effort to do the same task from scratch for this application. An expandability quality

rating may then be calculated with the formula: 7!.

Effort to Expand
RE

Equivalent Development Effort

5*. This allows three different values of the expandability rating to be computed. First, the

average of the six individual criteria ratings. Second, the expandability factor rating

itself. Third, the ratio of effort as defined by the above formula.

Although the values given by questionnaire respondents inevitably contain bias and

subjectivity, these negative characteristics were minimized by means of a quasi-delphi

technique. That is, several copies of the questionnaire were given out to software

managers and software engineers within each project. The average value of the ratings,

averaged over all personnel questioned on a given project, can be expected to be more

accurate than the values of a single typical respondent. Ideally, the questionnaires should V,-

be filled out by personnel who have experience with all four of the surveyed projects, but

no such personnel were identified in this study.

-iI.. A total of 10 questionnaires were completed; three each from projects A, B and D and one -;- .

~ f fromn project C.

...6.

:-: 5-6 ""

* - - ..-

.--. ,; . . --..- ...- - ..- ..:.- ... : . _ .-.- ... -. ,--. . .-.,.

" 5.3 DATA ENTRY

5.3.1 Metric Data Entry Files

The handwritten entries from the 16 metric worksheets described in section 5.2.1 (4

projects x 4 life-cycle phases) were entered as raw data files. The raw data files were

entered by means of the VI screen editor, and stored on Boeing Aerospace Company's

Software Support Center VAX-i 1/780 computer running under the UNIX operating system.

Raw data files were converted to matrices of worksheet entries by means of small

formatting Fortran-77 programs and all data entries were checked against the original

worksheets. Data entries were used to calculate metric element and metric values by

means of Fortran programs which implemented the metric formulas given in the Metric
Tables in Appendix B of Volume II, "Guidebook for Software Quality Measurement".

Metric values were also checked for reasonableness; e.g., in one case a computed metric

"--.. value greater than 1.0 was traced to an incorrect metric definition formula, which was

then corrected.

Table 5.3-1 shows a summary of the metric values for all metrics within expandability and

survivability, for all four projects, and all four worksheets. The table contains the

minima, maxima, standard deviation and mean values for each metric.

4..7

* -"q.' .

, .. :.4.

.4.'

5-7

. 4°

Table 5.3-1 Metric Values: All Projects, All Worksheets

METRIC MIN MAX STD. DEV. MEAN

AG.A .00 1.00 .38 .57

AG.2 .00 1.00 .38 .59
AG.3 .63 1.00 .17 .89

AG.4 .00 .33 .13 .20
AM.1 .00 .90 .30 .15

AM.2 .00 1.00 .38 .45

AM.3 .00 1.00 .39 .24

AM.4 1.00 1.00 .00 1.00

AM.5 1.00 1.00 .00 1.00

AM.6 .00 1.00 .41 .78

AM.7 .00 1.00 .40 .79

AU.l .36 1.00 .23 .75

AU.2 .33 .67 .18 .54

DI. 1 .25 1.00 .24 .84

GE.1 .07 .50 .24 .22

GE.2 .21 1.00 .28 .74
MO.2 .00 1.00 .30 .28

MO.3 .00 .85 .41 .49

RE.1 .33 1.00 .23 .78

SI. .00 1.00 .35 .61

SI.2 .00 1.00 .50 .75

Sl.3 .07 .50 .16 .17

SI.4 .56 1.00 .17 .87

SP.l .40 1.00 .25 .75

VR. 1 .00 .67 .46 .56

5-8

5.3.2 Quality Rating Entry

The handwritten entries for the 10 Expandability and Survivability Rating Questionnaires,

described in section 5.2.2, were entered into the UNIX system in the same manner as the

metric worksheet entries described in section 5.3.1. Because of the smaller quantity of

data, no formatting programs were needed.

5.3.3 Data Entry in "S"

"*" "S" is a language and system for data analysis which was developed by Richard A. Becker -

. and John M. Chambers of Bell Laboratories, and released in January 1981 to run under the

UNIX operating system. Data in S is organized into named datasets which are kept in

,. databases and retrieved automatically when named in an expression. The fundamental

data structure is a vector; other data structures such as matrices are built up from
vectors. Matrices of metric values and quality ratings were read from their UNIX files

into S datasets.

All data analysis described in section 5.4 was accomplished by means of functions in the S

language. Parameters for high-level plotting functions on the Hewlett-Packard 7221 pen-

plotting terminal were entered, so that the regression graphs shown in Sections 5.4 could

be plotted.

5.4 DATA ANALYSIS

5.4.1 Expandability Data Analysis

. The data collected from the metric worksheets for expandability related metrics, as

described in section 5.2.1, are summarized in Table 5.4-I. This table contains the average

*score of all metric scores for each criterion of expandability, for each of the four

projects. The mean score for expandability is computed as the average of the criteria

* .scores for each project.

5-9
[*.. ... ** -

,oQ,. .. . - °

" - " -.. . .' " ' - ' -. . .
,

. . .
"

. . . . •-' -

Table 5.4-1 EXPANDABILITY CRITERION SCORES

PROJEC .___,

CRITERIA A B C D

AUGMENTABILITY AG .51 .52 .60 .46

GENERALITY GE .46 .46 .94 .43

MODULARITY MO .44 .36 .16 .28
SIMPLICITY SI .69 .40 .66 .70

SPECIFICITY SP .82 .40 1.00 .77

VIRTUALITY VR .67 .67 .50 .50

MEAN CRITERIA SCORE .60 47 .64 .52

The data collected from the rating questionnaires described in section 5.2.2 are

summarized in Table 5.4-2. This table contains the quasi-delphi quality rating value for

each criterion of expandability for each of the four projects. The expandability quality
rating is then computed as the average of the criteria ratings (Mean Criteria Rating) for

each project. The !xpandability Factor Rating for each project is the quasi-delphi rality

rating value for the attribute expandability, taken from the rating questionnaires. The

third expandability rating is calculated in terms of manmonths of effort data taken from

the rating questionnaires; this Effort Rating is calculated from the formula

RE I - Effort to Expand

Equivalent Development Effort

5-10
.-.- - - - - - - - - - - - - - S.

-•.p .. o V S .VZ. - w

Table 5.4-2 EXPANDABILITY QUALITY RATING VALUES

PROJECT

CRITERIA A B C D

AUGMENTABILITY AG .34 .57 .70 .73

GENERALITY GE .50 .50 .80 .43

MODULARITY MO .47 .80 .65 .63
SIMPLICITY SI .53 .67 .35 .27

SPECIFICITY SP .80 .70 .65 .50

VIRTUALITY VR .30 .53 .75 .77

MEAN CRITERIA RATING .49 .63 .65 .55

FACTOR RATING .4 .67 .80 .67
- *1

EFFORT RATING (R .0 . 3 .87 63

The data from Tables 5.4-1 and 5.4-2 was statistically analyzed to compute regression

* equations and correlation coefficients to compare expandability scores (metrics) with

expandability rating values (quality levels). The results of this analysis are shown in Table

5.4-3.

5-11

. *:. i]i

,-.. - ~ * .~ K , . . - -.

" - '-

Table 5.4-3 Summary of Statistical Analysis for Expandability

QUALIY RATING ____

STATISTIC Individual Mean [Effort
Criteria Criteria J Factor j RE

Intercept .61 .62 .66 -. 61

Slope .05 -. 07 .02.28

Correlation -. 06 -. 08 -. 02 .96

Coef ficient

Y= a+bX

14a = Intercept Y = Quality Rating

b = Slope X = Criteria Score (Metrics)

The data in Tables 5.4-1 and 5.4-2 and the regression/correlation results in Table 5.4-3 are

plotted in Figures 5.4-1 through 5.4-4. The X axis represents the expandabulity criteria

scores (calculated from the metric scores) and the Y axis represents the various

expandability quality ratings.

The results of this data analysis show poor correlation between expandability criteria

scores (metrics) and all of the expandability quality ratings based on individual people

rating the system attributes. The results however, show good correlation (0.96) between

expandability criteria scores and the expandability quality rating based on the Effort

Rating, R E.

5-12

. ..- . -. .. .

Corrlatin -.06 .0g-. 0 .96 .I

EXPANDABILITY VALIDATION

SLP -. 0

INDIVIDUA CRTEI SCRSFO61POET

-- iif-.. ..

EXPANDABILITY VALIDATION

CORLTION COEFFICIENT -- 06

INTERCEPT -. 02

Jd

5--

* '7

-I

I-.. EXPANDABILITY VALIDATION

-.9M TION COEFFICIENT " -. 02
-. 9..-.

.9... INTERCEPT - 8.6

€f -- SLOPE -. 04 *

I:L

,S

: , -'.

C

0. 0 0.2 0. 4 0.8 0.8 1.0

MEAN CRITERIA SCORES BY PROJECT

Figure 5.4-3 Expandability Mean Criteria Scores vs.

Factor Rating Values

5-15

. . . * .

-:.--... .:,..

.: . .:, * :.

EXPANDABILITY VALIDATION

CRRELATION C~OEFFICIENT -. 98

INTERCEPT - .81

- dSLOPE -2.28

%

d IL
0. . . 0 . .

MENCRTRA-CRE.YPRJC

Fiue .- xadbltyMa rtraSoe s

Ma-othRto

5-1

5.4.2 Survivability Data Analysis

The data collected from the metric worksheets for survivability realted metrics, as

described in section 5.2.1, are summarized in Table 5.4-4. This table contains the average

score of all metric scores for each criterion of survivability, for each of the four projects.
The mean score for survivability is computed as the average of the criteria scores for

each project.

Table 5.4-4 SURVIVABILITY CRITERION SCORES

"-___" PROJECT _____,

CRITERIA A B C D

ANOMALY MAN. AM .66 .75 .60 .48

AUTONOMY AU .72 .61 .84 .51

DISTRIBUTEDNESS DI .84 .68 1.00 .94

MODULARITY MO .45 .36 .44 .28

RECONFIGURAB. RE .54 .71 1.00 •88

a'. __ __MEAN CRITERIA SCORE .64 .62 .78 .62

The data collected from the rating questionnaires described in section 5.2.2 are

summarized in Table 5.4-5. This table contains the quasi-delphi quality rating value for

each criterion of survivability for each of the four projects. The survivability quality

rating is then computed as the average of the criteria ratings (Mean Criteria Rating) for

each project. The survivability Factor Rating for each project is the quasi-delphi quality

rating value for the attribute survivability, taken from the rating questionnaires.

5-17
• ~5-17 i:"

:''. .2.:.?.,??....,-2':.'.'-................-,.....'.,...,-"-.,.,...,.....,,." -.j. i..- ...i-?...-.-. -...- : .

Table 5.4-5 SURVIVABILITY QUALITY RATING VALUES

PROJECT___

CRITERIA A B C D

ANOMALY MAN. AM 1. 00 .93 .80 .50

AUTONOMY AU .83 .47 .30 .50

DISTRIBUTEDNESS DI .70 .63 .85 .70

MODULARITY MO .50 .80 .65 .67

RE -ONFIGURAB. RE .93 .73 .95 .70

MEAN CRITERIA RATING .79 1.711 .71 J 61

FACTOR RATING .93 .93__ .95 j .68

The data from Tables 5.4-4 and 5.4-5 was statistically analyzed to compute regression

equations and correlation coefficients to compare survivability scores (metrics) with

* ~survivability rating values (quality levels). *rhe results of this analysis are shown in Table , .

5.4-6.

Table 5.4-6 Summary of Statistical Analysis for Survivability

QUALITY RATING
STATISTIC Individual Mean T

Criteria I Criteria Factor

Intercept .59 .61 .37

Slope .18 .14 .76

Correlation .21 .15 .45

Coef ficient

Y= a+bX

a = Intercept Y = Quality Rating

b =Slope X = Criteria Score (Metrics)

5-18

. . - , .-, .- - . . .- . t o-. ..-- . . o -

*- ---- . * - --

The data in Tables 5.4-4 and 5.4-5 and the regression/correlation results in Table 5.4-6 are

plotted in Figures 5.4-5 through 5.4-7. The X axis represents the survivability criteria

scores (calculated from the metrics) and the Y axis represents the various survivability

quality ratings. All of these correlations were positive, but were fairly low (.15 to .45),

with the highest correlation at the factor rating level.

A second set of correlation studies were then conducted using metric data from

Worksheets I and 2 only since there is a greater amount of metric data for survivability

on the system level worksheets. For example, 100% (7 of 7) of the worksheet entries for
the criterion reconfigurability (metric RE.) are on worksheets I and 2; 87% (13 of 15) of

the worksheet entries for the criterion distributedness (metric DI.) are on worksheets I

and 2. The concern for survivable software is primarily affected by architecture rather
than details at the code level. Survivability is affected by such things as how processes

and functions are distributed among the nodes, how information/data is distributed

throughout the system, and the scheme for communicating among nodes. Survivability is

S- not very dependent on details such as the types of constructs used in the code or the

number of comments on listings. (The correlations using scores from worksheets I and 2
only were not performed for expandability as this quality factor is dependent both on top-

level architectures and on details at the code level.)

.1

L~5-19

i E.H

7S

SURVIVABILITY VALIDATION

~CR&ATION MCEFFICIENT -. 21

INTERW'T .5

d

-'SS

r-ovruA c*~r CRSFRALPOET

5-0*

3.1

SURVIVABILITY VALIDATION

CRRELATION COEFFICIENT -. 15

INTERCEPT .81

CD
d SLOPE .14

cS

Q.00204 . . .
mEAN RITEIA SORESBY POJEC

Fiue546Srivblt enCitraSoe s

Mea CrtraRtigVle

5-2

SURVIVABILITY VALIDATION

CORRELATION COEFFICIENT -. 45

INTERCEPT *.97

CS

5--

The data summarized from only worksheets I and 2 is s')own in Table 5.4-7.

Table 5.4-7 Survivability Criteria Scores, Worksheets I and 2

PROJECT _ _-"

A C D

MEAN CRITERIA .68 .66 .73 .62

SCORES _ _

The results of the statistical analysis of data from Table 5.4-7 and 5.4-5 is shown in Table

5.4-8.

Table 5.4-8 Summary of Statistical Analysis for Survivability,

Worksheets l and 2

QUALITY RATING

STATISTIC Mean -

Criteria Factor

Intercept .08 -.66

Slope .93 2.27

Correlation .58 .81

Coef ficient

Y= a+bX

a =Intercept Y = Quality Rating

b = Slope X = Mean Criteria Score (Metrics)

' The correlation coefficient, using only worksheets I and 2 metric data, are significarthl

higher than using data from all worksheets when evaluating survivability. Again

highest correlation was at the factor rating level (.81).

The data in Tables 5.4-7 and 5.4-5 and the regression/correlation resjlt,

plotted in Figures 5.4-8 and 5.4-9. 5-23
.

H 955 SOFTWARE QUALITY MEASUREMENT FOR DISTRIBUTED SYSTEMS 2/2
VOLUME l(U) BOEING AEROSPACE CO SEATTLE WA
TP BOWEN ET AL. JUL F R0 C-TR-8--175-VOL-1

UNCLASSIFIED F30602-B O-C-03-31 F/G 912 NL

E/I/IIE/////E/I//EI/EI//IIE
EEEEEEEEE/U

L1.5~

.- k.

-~~~~ L,111 *~ 328 2

i.IAl Ai 330 2 .0

"'I 1.25 l1.4 1ii1.6
11- ii-1W1

' I 21 .2 ..,.d. .

MICROCOPY RESOLUTION TEST CHART
NAIDINAL BUREAU OF STANDARDS-1963-A

1

P.?I

'o"..

... . -.... ..
"If_ -.4 ** *W -, ,.. "-.... .. ."...'-....

.p., ,. y, rq,, .q : * 'q
i ' '

. . . .' " '
-

SURVIVIABILITY VALIDATION

CS

0. . 0400 . .

Uymc

51-2

% %
--- --- ---

- -a,. *'* *. ..

SURVIVIABILITY VALIDATION

W TAWI COWFICD1 0.81

INTEREPF - -.-

d

5-2

%.-.

NI' p,.o ..

'..;',.

d-

0.0 0.28 0.4 0.8 0.8 1.0 .

Figure 5.4-9 Survivability Mean Criteria Scores vs. -

5-25.i

t ' * < . t. 4 ,: :% : , ,..., .-. .-.-,. X..-- .*,.-" .-., .- ... a -...-...... x; -...- --.

I% 7- -TO

5.5 CONCLUSIONS

5.3.1 E~pnmiiyConcklusons
h. ~

The statistical analyses of expandability (metric) scores and expandability quality rating

values support the addition of the quality factor expandability (and its criteria and

metrics) to the software quality framework. The mean criteria scores (average metric

scores) are highly correlated with the quality rating values of the Effort Rating (RE), as

shown in Figure 5.4-4. For this plot, the mean critera scores (ME) from Table 3.4-1 were

used for the x-axis, and the quality rating values based on the Effort Rating (RE) from

Table 5.4-2 were used for the y-axis. (The Effort Rating is calculated from man-month

effort estimates on the rating questionnaires.) The best regression fit to the data is:

R = -0.61 + 2.28 ME

The correlation coefficient calculated for this regression is 0.96, significantly above

random. This correlation provides a high confident level for the addition of the factor

expandability.

(Note that the y-intercept is not equal to zero. Therefore, an attempt to find a best fit

to this data, while forcing the line through the origin (with y-intercept equal to zero) 4
would yield higher residual error than this fit.)

A second conclusion that can be drawn from the statistical analyses of expandability is

that the Effort Rating, based on man-month effort estimation, is probably more useful for

validation than the Mean Criteria Rating or Factor Rating, both based on an estimation of

attributes of the software as judged by an experienced observer. The Effort Rating

yielded the highest correlation (.96) with mean criteria scores (metric scores). The

correlations for the Mean Criteria Rating and the Factor Rating were near zero. This

indicates that metric scores and these rating values are essentially uncorrelated- little

better than random. Expandability validation plots and a summary of the analysis are

found in section 5.4. 1.

5-26

p II*.

• ,, Z

IPLP ' '-' % % ° - - + +" ".+',' .', "+. "4. '-' t'" . ' ' -' ' °% .4+, % " "-'e',- '. -,' . - ,%l
p - + _ e " -', ., .., ' . _ , , . ., + ..- " . " . " " ' . ' .' .• ', • • ' ., " . " , ' ' . ." - : " " .' .' .' ,, ' ' ,, ' +. ..,r . ..-..* .', ,. .,%, .+ ",%-

__& -- .

Survivab-ity Concluions

The statistical analyses of survivability (metric) scores and survivability quality rating

values provide a high confidence level for the addition of the quality factor survivability

(and its criteria and metrics) to the software quality framework..4"

As shown in section 5.4.2, all correlation coefficients attained when using data from all

four worksheets in validating survivability are positive with a range of .15 to .45. In

-; comparison, the range of the correlation coefficients attained when using data from only

worksheets I and 2 is from .58 to .81. This indicates that the data analysis involving

worksheets 1 and 2 supports the rationale for pursuing this approach.

However, researchers on this contract feel that the quasi-delphi questionnaire approach is

useful, but not conclusive. An improved method of estimating survivability ratings

(perhaps one which includes probability data or effort ratios in man-months) could

improve the confidence in the validation of survivability.

a'-2

i 5-27

p,. ,... . ,, a.,.,,. - ,..,..-~ ".... a..,... - -... , . .
* *P. ,, , ,,. ,P " ,' •-'. . , . * '" . , .*.* . ,,' ..' •. .',' ' ,,, . * . A,, . . ' .. -,- • .", -. ,,. . ." . . .'. -,, a.'. - . '

SECTION 6.0 .

RIECOMMENDATIONS FOR FUTURE RESEARCH

ULl QUIUTY FACTORS AND CRITERIA

A suggested new criterion is ultrastability. This criterion relates to "the capacity of a

system to withstand perturbations which have not been forseen by the designer." (BEE 75,
p.108) This criterion, by its very definition, cannot be evaluated by the system designer

until the design process is complete, and the maintenance process initiated. It would fall

within the factors of survivability, reliability, and maintainability.

L1.2 Prototypeabiity

A suggested new criterion is prototypeability. Prototypeability measures the extent to

which a system design can be developed through a sequence of executable prototypes
possessing increasing functionality, with more and more implementation detail and

alternative designs being the rationale for the successive prototype systems. The question
is whether or not the design can evolve with the implementation, and whether or not the

design as implemented can support design decisions. The prototype approach is a special

case within the distributed system life cycle, where the system passes several times

through each life cycle phase.

Advantages of P ototypeability

Design can evolve, in ways not limited by initial requirements. Competing imple-

mentation approaches are repeatedly examined. It is easy to generalize require-

ments and meet the newly generalized requirements in a new prototype system. It

takes less time to backtrack to an earlier phase of the life cycle. Initial prototype

systems become early starting points for maintenance and enhancement processes.

Disadvantages of Prototypeability

There may be language or system changes which require additional training or

* 6-1
%* % .. * .% -*,* - *-,* *

FA 1w 17 -4 -P V - -

personnel. Since the design is not fixed, it is hard to implement and administer the
system efficiently. Separate languages for prototypes and production versions may
require a software translation phase in the life cycle. There is likely to be a shift
from an interpreter-based approach in prototypes to a faster compiler-based
approach for production. It is difficult to avoid changes and interruptions, since the
prototype approach is advertised to adapt to these so quickly.

6.13Distfutees,9 Integration, and Transparency

Fusi and Sommi of IBM Italy (FUS 81) draw distinctions useful to our definition of
distributedness, and to our discussions of evolveability and the distributed system life
cycle.

"to use the term 'computer network' as a synonym for distributed system is quite
misleading. In fact, a computer network provides nothing more than the basic

communication between computers, which is a necessary but not a sufficient
ingredient to create a distributed environment.... When processors communicate
using a shared storage and some special instructions, the system is a multi-processor 4

system. When memory is not shared and the communication between processors is
obtained by using interconnection media like, for example, I/0 channels, coaxial
cables, optical fibers, teleprocessing links, satellite links, public data networks, the
system may more properly be def ined as a Distributed Data Processing (DDP)
system. If we define 'integration' the capability of accessing a set of interconnected
data processing elements as a single system, a DDP system offers a lower degree of
integration than a multi-processor system, and more or less presents the same

problems as far as distribution aspects, but (a) it is a system which covers a greater
generality of aspects of distribution (both local and geographically dispersed proces-
sors to be interconnected) and (b) it offers the possibility to move smoothly towards
processor integration. This means that a DDP system may evolve to a fully distri-
buted system (complete integration) following the evolution of the communications
media (higher bandwidth etc.) and the evolution of user applications."

They also define "Transparency" for a distributed system of virtual machines:

(a) the ability to utilize the same programming interface both for local and
remote communications

6-2

%U V VU .%

(b) the possibility to map remote communications on different transmission

subsystems without user involvement

.4q

b,1.4 Pralleliun vs. Provabilty

Hoare and Chen (HOA 81) introduce a programming notation to describe the behavior of

groups of parallel processes communicating with each other over a network of named

channels. Denotational and axiomatic definitions are aimed towards a method for proving

the correctness of parallel programs. This ambitious attempt allows some non-

deterministic program assertions to be proved, but fails to show whether or not the

program will freeze into a deadlock state. It seems clear, therefore, that automated

methods for the design of distributed systems cannot yet be expected to validate the

correctness of particular parallel programs. Thus, for distributed systems, testing and

validation can be much more difficult than for sequential systems whose behavior may be
mathematically modelled in terms of denotational semantics.

6.1.5 Responsiveness vs. Consistency

Kamoun, Kleinrock, and Muntz (KAM 81) discuss integrity and consistency issues for

distributed databases. They present a mathematical analysis of Le Lann's ticketing

method of concurrency control for fully redundant multiple copy distributed database

systems, which is being implemented in the Sirius-Delta Project at INRIA (Institut

National de Recherche en Informatique et Automatique, France). The scheme requires

u, ~ updates at each site to be processed in the order of origin, as opposed to the order of

arrival. The characteristics of variable communication delays in the network affect

performance. One goal of this analysis is "that some analytical quantitative tools become

available to help identify performance characteristics of the various schemes" for

concurrency control. It is perhaps too early to define criteria or metrics for this, but a
comprehensive survey of concurrency control algorithms may be found in (BER 80)
(Bernstein,P.A., and Goodman,N. "Fundamental Algorithms for Concurrency Control in

Distributed Database Systems", Tech.Rept. CCA-80-05, Computer Corporation of

America, 15 Feb 1980) One scheme for concurrency control is of particular relevance to

, distributed computer systems with high survivability requirements. This, the virtual ring

architecture design, is described in Volume III.

6-3 4-

. -

62 CENTROID OF A DISTRIUTED SYSTEM

There is a gradation between highly centralized and highly peripheralized distributed
systems. There is also a continuum of different configurations of dispersion in a
geographically dispersed distributed system. A novel means of representing this is the

Centroid of Computation. A related concept is the Computational Moment of Inertia,
which may be proposed as a step towards a quantitative measure of distributedness. The
following discussion leads up to formal definition of these constructs.

As Metcalf e and Boggs explain (see reference below):

"One can characterize distributed computing as a spectrum of activities varying in

their degree of decentralization with one extreme being remote computer network-
ing and the other extreme being multiprocessing. Remote computer networking is
the loose interconnection of previously isolated widely separated and previously
monolithic and serial computing systems f rom increasingly numerous and smaller

pieces computing in parallel. Near the middle of this spectrum is local networking
the interconnection of computers to gain the resource sharing of computer network-
ing and the parallelism of multiprocessing".

SFirst, consider the special case of a distributed system which consists of precisely two

processor nodes connected by a straight-line communications link. If the two nodes have

identical performance, we may model the system behavior as a spacial average, consisting
of one processor with twice the performance of the two original node processors,
considered to be located halfway between them, in the center of the communications link.
Similarly, four identical processors located at the corners of a square of links may be
modeled in some aspects as one processor of four times the unit performance, located at

'4 the center of the square. Of course, this neglects the very distributedness of the system.
Any information regarding communication delays between processors has been lost, as has
information relating to real-time asymmetries in processing.

* If two non-identical processors are located along a communications link which is straight
and of unit length, we may locate the single Virtual processor at a point between the two
whose distance is a weighted measure of the relative performances. For example, a
processor of unit power and a processor of nine-times-unit power connected by a link of

6-4

ten units length may be modeled as a virtual processor one unit from the larger processor.

From this location, the products of distance and power in each direction are equal.

The determination of the centroid of computation, given a planar distribution of

processors, is formally the same as determining the center of mass, where mass plays the
role of computational power. One benefit of this is to indicate where, geographically, the
"effective" center is of a distributed system.

This model may be extended to model the degree of geographical centralization or
decentralization. The procedure is to, first, locate the centroid of computation. Next,
take the square-root of the sum of the squares of the products of distance from centroid
of computation to each processor and the power of that processor. This number will be

smaller when the more powerful processors are near the centroid of computation, and
larger when the more powerful processors lie at the extremities of the distributed system.
This comparison remains valid between two distributed systems of the same maximum

-U distance. This metric is analogous to the rotational moment-of -inertia.

These ideas need to be strengthened and formalized to be of greater applicability to the
study of distributed computer systems. One problem with the above analysis is that the
DISTANCE between two computers is not the sole measure of their "effective" distance.
It would be valuable to include the TIME it takes to communicate between two processors,
and the WIDTH of the channel in bits-per-second. We therefore, def ine the VIRTUAL

DISTANCE (VD) between two processors:

VIRTUAL DISTANCE between processor I and processor 3 =VD(I,3) =the TIME it
takes to transmit one bit from I to J, in the shortest possible path =(communica-

tions delay from I to J) / (channel width in bits).

Actually, taking the speed of light into account, we can correct for very long geographic
distances as well. The following formula shows the relative contributions of inherent
communications delay and transmission delay. For speed-of-light, of course, one may
substitute the appropriate propagation velocity if lower.

6'.

6-5

__ q&.•.! 2 ~. .o

VD = (geographic distance)2 + (time-to-communicate-l-bit)2

(speed-of-light)2

Metcalfe and Boggs ("Ethernet Distributed Packet Switching for Local Computer Net-

works", Robert M. Metcalfe and David R. Boggs, Xerox Palo Alto Research Center,

Communications of the ACM, July 1976, Vol 19, No. 7, p. 395) consider a related measure

"The product of separation and bit rate, now about 1 gigabit-meter per second

(Gbmps), is an indication of the limit of current communications technology and

can be expected to increase with time":

Activity Separation Bit Rate

Remote networks IC km 0.1 Mbps

Local networks 10 - 0.1 km 0.1 - 10 Mbps

Multiprocessors 0.1 km 10 Mbps

We can also define computing power in terms of COMPUTATIONAL MASS. The

COMPUTATIONAL MASS (CM) of a computer is the number of bits processed per second.

More exactly,

COMPUTATIONAL MASS of PROCESSOR I : CM(I) =

(Operations-per-second) X (Number-of-bits-processed-per-operation)

(i.e. I Megaflop with 32-bit words means CM = 32,000,000)

The measurement of "operations-per-second" is difficult itself, as it can be made only

with respect to some benchmark software which drives the system through some

distribution of operations. It is difficult, usually, to make such comparisons between

processors manufactured by different vendors. In this discussion, we assume that such a

benchmarkc environment exists, and that different processing powers may be compared.

Continuing our analogy with the elementary physics of kinematics, we substitute

VIRTUAL DISTANCE for distance and COMPUTATIONAL MASS for mass in the conven-

tional formulae for centroid, moment-of-inertia, etc. in physics.

6-6

.% .,- ." "..

VIRTUAL DISTANCE is not quite like geographical distance, which forms a euclidean
metric space. VD satisfies 3 of the 4 axioms of a metric space:

VD(i,i) = 0

VD(i,j) = 0 i=j
VD(i,k) equaLor. less. than VD(i,j)+VD(j,k) triangle inequality

but VD(i,j) does not necessarily equal VD(j,i) consider half-duplex

Because Virtual Distance is not symmetrical (VDi =/= VD(j,i)) the representation of the

distributed system in terms of nodes and links technically a "directed graph" with
weighted vertices (nodes) and arcs (links).

-'a

N The VIRTUAL CENTER of a distributed system, not necessarily the same as its
CENTROID, is the processor with the minimum distance to all other processors.

-~ CENTER(i) if.and.only.if (for.all j not.equal.to i) (there.exists k such.that)

(VD(i,k) less.than VD(j,k))

If we wish to add more processing power to some existing processor in a distributed
system, for example, it makes sense to add it to the CENTER processor so as to minimize
the Virtual Distance to all other processors which may need to indirectly access that
power. We can then define the RADIUS of the systems: -

RADIUS = Maximum (over j) of VD(ij) where CENTER(i) = True

The Radius is therefore one measure of distributedness. But it is not yet what we want.
The reason is: such a measure of distributedness only takes into account the "worst case"
of the greatest Virtual Distance that can be found between any pair of processors. What
is missing here is representation of how closely the typical Virtual Distance between

processors approaches the worst case. Clearly, there is a difference between a system in
which ALL processors are far apart, and a system in which almost all processors are very
close except for one remote station. We need a formula which considers all links and all
nodes, to be able to distinguish between this and other cases.

We can define our measure of Distributedness in terms of the "computational moment of

6-7 del
a....

..

,, .. -.- .-. -.. . .- . ., . - . . a. .

p.

inertia' of the system with respect to the CENTER:

N

CI VD4P2x CMQj where CENTERWi True

4. Eand N number of nodes

What we have now is a single number which sums the contributions of all the processors.

. This function is linear with respect to the Computational Mass (power) of the processors.

and non-linear with respect to the Virtual Distances from the Center (with an emphasis or-

the most distant processors). The function is zero for a uniprocessor, and larger as the

Virtual Distances between processors in a distributed system increases. It is therefore

useful as a measure of distributedness.

There are a number of additional aspects of distributedness which need to be incorporated

into this model. For example, the interface with human users. What is the computational

power of human operator in such a system? What is the virtual distance between a person

and the various types of terminals?

When processors, sensors, or communications links are moving (as with space-, air-, or

sea-borne embedded systems) how do these equations change with time? How does the

measure of distributedness change in a system whose processors appear (when the system

is expanded) or disappear (hardware failure) or change their connectivity (reconfigurabil-
ity)? "::

6-8 -.

% .

47

..4

~6-8 '"

* • . . o
o

, - - , . - •o , • ° o , . • : . ° * . . " ° * . - - . . - " *

k-, . ° - .' .' 4 .o , -.-.j*o • * -. o -. - . . ." *° .'. * ° . . " - ° . - ."% .. , °= ' . °..., ° - . ,

- - . - . .-

6.3 REFERENCFS FOR FUTURE RESEARCH

Recent references in the literature of Distributed Systems which emphasize system

evaluation methodology, and which may be further examined in the next phases of this
'A.

research include:

(A & J) Anderson, George A. and Jensen, E. Douglas, "Computer Interconnection

Structures: Taxonomy, Characteristics, and Examples", ACM Computing Survey, Dec.

1975

(BAL) Balkovich, Edward E., "On the performance of decentralized software", PER EVAL

REV 9:173-80, Summer 1980. Reports on performance measures for decentralized

.1 software written in a programming language for distributed computer systems. 16

references.

(BIE) "A Performance Tool for Design and Installation Support of Distributed Database

Systems", J.Bieber & S.Florek, DCS 440-447

(BNL) Locanthi, B.N., "The Homogeneous Machine", Technical Report 3759, Computer

Science Department, California Institute of Technology, Pasadena, CA, Jun. 1980

(CHW) (Chu, W. and Chew, P., "Computer Networks: A Tutorial", IEEE Comput. Soc.,

New York, 1980)

(COD) (COD 82) Codd, J.F. et. al., "Data Base Debate", Computerworld, Sep. 1982, p. 14

(COF) Coffman, E.G., Gelenbe, E., & Plateau,B., "Optimization of the number of copies in

a distributed data base system", PER EVAL REV 9:257-63, Summer 1980. Considers the

effect on system performance of the distribution of a data base in the form of multiple

copies at distict sites. 4 references.

(DCS) (DCS = Proc. 1st International Conference on Distributed Computing Systems,

Huntsville, Alabama, 1-5 Oct 1979, IEEE 79CH1445-6 C)

6-9

* *** . .

V',W.qr , I, %% -q - "*
"

." ', J " " " ' "' ".-d . " - . ""-"- - " - . '.-'_" '.-. ' -- "' " - ' " "-•. . . "-" -

- . w : , - ,.,. ,-,-,.,-.. ,: -- ,': -. , ,-" " "-"- - - . - -. . - - -- - -- -

(DCS2) (Proc.2nd International Conf. on Distributed Computing Systems, Paris, France, 8-

10 April 1981, Computer Society Press, IEEE No.81CH1591-7)

(DSI 82) Strategy for a DOD Software Initiative, Dr. Edith Martin, Deputy Undersecretary

of Defense for Research and Engineering (Research and Advanced Technology), 1 October

1982

(GAU) Gausnell, William A., "Optimizing a distributed processing system", SMALL SYS

8:20-3, Oct 1980. Recommends ways to work towards an optimum system based on

previous experience, and on methods currently being used at Bell Labs.

(GOK) Goke, R. and Lipovski, G.3., "Banyan Networks for Partitioning on Multiprocessor
Systems", Proc. 1st Ann. Symp. Computer Architecture, 1973, pp. 21-30

(HOA) Hoare, C.A.R. and Chen, Z.C., "Partial Correctness of Communicating Sequential

Processes", DCS2, 1-12

(LAR) (Larson, R., "Tutorial: Distributed Control", IEEE Comput. Soc., New York, 1979)

(KAM) Kamoun, F., Kleinrock, L., and Muntz, R., "Queueing Analysis of the Ordering Issue

in a Distributed Database Concurrency Control Mechanism", DCS2, p.13-23

(LES 80) Lesser, V., "Working Papers in Distributed Computation-I Cooperative Distribu-

ted Problem Solving", Computer and Information Science Department, University of *

Massachusetts at Amherst, Amherst, MA 01003 4

(MAM) Mamrak, Sandra A. "Sizing distributed systems: Overview and Recommendations",

NTIS, may 1980, 25pp, PB80-184377. $5.00. Presents an overview of sizing techniques,a

brief discussion of the factors that affect choosing one or a combination of techniques,

*, and a set of recommendations for choosing tools for sizing distributed systems.

(MAU) (Mauchley, John; Personal communication to 3. Post, Philadelphia, PA, June 1978)

(MCG) (McGlynn, D. R., "Distributed Processing and Data Communications", Wiley-

Interscience, New York, 1978)

6-10

%.. '. ,. , .
• *• " " , 4 . % . " , " " • " . ," " ..-.- "..-' . , , p.- . - "*,,*,,,, * .',.. ,.- . .. -...-,..,: ..

a.'

(MIT) "Evaluating the Trade-off Between Centralized and Distributed Computing",

I.Mitrani & K.C.Sevcik, OCS 520-527

(PRE) Preparata, F.P., and Vuillemin, 3., "The Cube-Connected Cycles: A Versatile

Network for Parallel Computation" Comm. ACM, Vol. 24, No. 5, May 1981, pp. 300-306)

(RAM) Ramamoorthy, C.V., "The design methodology of distributed computing systems",

NTIS, May 1980, 101 pp., AD-A086 690/5. $9.00. Develops performance evaluation

'£ techniques for asynchronous concurrent systems using the Petri net approach. Analysis

techniques for deadlocks in asynchronous concurrent systems are explored. A need for

adaptive reconfiguration techniques is established along with necessary and sufficient

conditions for reconfigurability

(ROT) Rothnie, J., Bernstein, P., and Shipman, D., "Tutorial: Distributed Database

Management", IEEE Comput. Soc., Los Alamedos, California, 1978

(SCH) Scherr, A.L., "Distributed Data Processing", IBM Syst. 3., Vol. 17, No. 4, 1978,

p.338

(SEG) "A Majority Consensus Algorithm for the Consistency of Duplicated and Distributed

Information", J.Seguin, G.Sergeant, P.Wilms, DCS 617-624

(SIE) Siegel, M.3., "A Model of SIMD Machines and a Comparison of Various Interconnec-

tion Networks", IEEE Trans-Computers, Vol. C-28, No. 12, Dec. 1979, p. 907-917"Z%

(SMI 77) Smith, R. A., "The Contract Net: A Formalism for the Control of Distributed . -_

Problem Solving", 5th International 3oint Converence on Artificial Intelligence, Cam-

bridge, Massachusetts, 1977

(SPE 81) (Sperry, Dr. Roger; personal communication to 3. Post, Caltech, 1973)

(STN) Stone, H., "Parallel Processing with the Perfect Shuffle", IEEE Trans. Computers,

Vol. C-20. No. 2. Feb. 1971, pp. 153-161

6-11.

, - o o- o o o p o . . o- o . # . . - . - - - - .e2- • - . '

%°°°,-

(STZ) Seitz, C., and Hewitt, C., personal communication cited in "A Survey of Highly

Parallel Computing", IEEE Computer, Jan 1980, ref. 60, p.2 3

(SUL) Sullivan, Kenneth M., "Does distributed processing pay off?", DATAMATION

26:192-6, Sep 1980. Compares the costs involved in running a job on a large scale

centalized mainframe to the costs of running the same job in a minicomputer dedicated to

that task in a distributed processing environment.

(SVO) Svobodova, Liba "Performance problems in distributed systems." INFOR 18:21-40,

Feb 1980. Examines the performance issues involved in the decision to use a distributed

system, performance problems that arise in operating such a system, and the characteris-

tics and implementation of the needed performance evaluation tools. 40 references.

(SYK) Sykes, David 3., "The economics of distributed systems", COMPCON p.8-15, Fall 80

Discusses computer price/performance data communications, systems availability, and

database replication. A hierarchically distributed transaction processing system and an

equivalent centralized system are compared. 10 references.

(TAN) Tanenbaum, A. S., "Computer Networks", Prentice-Hall, Englewood Cliffs, New

Jersey, 1981

(THE) (Theirauf, R. 3., "Distributed Processing Systems", Prentice-Hall, Englewood Cliffs,

New Jersey, 1978)

(THU) (Thurber, K., "Tutorial: A Pragmatic View of Distributed Processing Systems",

IEEE Conput. Soc., Los Alemedas, California, 1980)

(WU) Wu, Chuan-lin, & Feng, Tsu-yun. "A software technique for enhancing performance

of a distributed computing system", COMPSAC p.274-80, 1980. Demonstrates a software

technique to effectively match the task execution and a distributed architecture. 17 __

references.
.9.

6-12

." . %e,'_q/' *... ". -*

Z .20 -9**** * .W4, %%V * . .. :. -

APPE.NDIX A .

BIBLIOGRAPHY

(The content of this appendx can be found in Volume III)..

A-1

% % %

4.m

4,%

L-.o-.. . . .* r~r .'. -.- , .-. .-.- -.- .. ,"

4'_'* * % . ." . -". , . ""° , * . " • - * ' .. *. .° " "-"- •"% -"•"."•"*"% . "* "" .% % % *-'

'S. ,... . , . . ,.. , ,., ... ,,.... . . . ,.,.. ,. ... , .-.. ,.. , % ., , . ,:,
5-'. '' , , , ", '.. ' '''''/ ,." , . ,... , . -"; .:%". ' .,;'"" ,.,,.., .. ,.-"" ,-' .,;" ," .

APPENDIX B
* GLOSSARY OF KEY TERMS

(The contents of this appendix can be foiuid in Volum IIO.

B*-1

dip.

."4'.!

' ° "

APPENIX B :-4.

.-.

B-
.-

* -. .- ,,

-~ .A~ - ~ .. - - -. -. * * - - - **,**-

*"'.

APPENDIX C
VALIDATION WORKSHEETS \

~.5

"p .

p

'.,

12.

C I "4.

K =.
.£' % , , .' -,, , , ,, . ., , . , .. . , . ,_. .,. , • -, - .. . -,,,, - ., * ,

g' " ,,,,'h 7 -, °.',,,.4.-,% ,' -. ' '#
.
" '_e. ',.'.,., ,_-.- -' .' . ,..~ 4 . -. - . *. . .,

METUrI WORKSHEET I SYSTEMs DATE:

REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: INSPECTOR:

1.1 STRUCTURE (REIAILITY, MAINTAINAMlUrY, VERIABiLITY, FLEXITfY, REUSASIfl

EXPANDABILITY, SURVIVABILITY, PORTABILITY, INTEROPERLM Y)

l.* Is an organization of the system/network provided which identifies all software func-

tions and functional interfaces in the system? DI.l(l) YN
2.0 Number of major functions. 51.1(2)
3.* Are there no duplicate functions? S1. 1(2) Y N
4* Is there a definitive statement of the requirements for the distibution of information

within the data base? DI.l10) Y N
3.* Is there an organization of the data base provided which identifies the types of system-

level information and the information flow within the system? DI.l(2) Y N
6. Is there a definitive statement of requirements for code to be written according to a pro-

gramming standard? SIA17) Y N
7.* Is there a definitive statement of requirements for processes, functions, and modules to

have loose coupling? MO.3(l) Y N
3.* Is there a definitive statement of requirements for processes, functions, and modules to

have high cohesion? MO.3(2) Y N

1.2 TOLERANCE (RELIABILITY, SUE VIVABILITY)

3. Are there definitive statements of the error tolerance of input data? AM.2(l) Y N

4. Are there definitive statements of the requirements for recovery from computa-

tional failures? AM.3(i) Y Nr
3. Is there a definitive statement of the requirement for recovery from hardware a

faults? AMA~i) Y N
6. Is there a definitive statement of the requiremnts for recovery from device

errors? AM.5(l) Y N
7.* Are there definitive statements of the requirements for recovery from communication

errors? AMA6I)y
g.Are there definitive statements of the requiremen ts for system recovery from node

or communication failures? AM.7(i)- - -

x New, ~*sModified

C- 2

J%

% , -*~...U q~4 '* .U

".4'

METRC WORKSHEET I SYSTEM, DATE:"

REUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: INSPECTOR:

1A CHAWNGERLITY (FLEXMD1IT, EXPANDAWlLTY
,',

I.* Is there a definitive statement of requirements for spare storage capacity (memory and

auxiliary storage)? AG.1(2,3) Y N

2.* Is there a definitive statement of requirements for spare processing capacity? AG.2(3) Y N
3.* Is there a definitive statement of requirements for spare I/O and communication channel

capacity? AGJ(I,2)
4.* Is there a definitive statement of requirements for interlace compatibility among all the

procesmors, communication links, memory devices, and peripherals? AGA(1) Y N

3.* Is twere a specific requirement for providing performance/price information for enhance-

ment trades? AGA(2) Y N

6.- Do specifications identify new technology tradeoff areas for software? AG.A(3) Y N

7.* Do software specifications include requirements for the criteria of the quality factor

expendability? AG.(4) Y N

1.7 SYSTEM INTERFACES OMROPERA rILITY, SURVIVAmLITY)

S.* Are processes and functions separated as logical "wholes" to minimize interface complex-

Ity? AU.l(I) Y N
7.* Are there specific requirements for each CPU/system to have a separate power source?

AU.2(l) Y N.

8* Are there specific requirements for each software scheduling unit to test its own opera-
tion, communication links, memories, and peripherals? AU.2(3) Y N

9.* Are there specific requirements for the software system to include a word processing

capability? AU.2(3) Y N

10.* Are there specific requirements for network communication capabilities in the event

of failure of a node or communication link? RE.I(I) Y N

ll.* Are there specific requirements for a node to rejoin the network when it has been recov-

ered? RE.I(I) Y N

•C-

3

% .%* . % '... . * *.• . ." .. '. ." ..-.

V. % A %If ,%", ' '. , - .. ,. " .

w-w-.. - - -- -. o -°- -

METRIC WORKSHEET I SYSTEM: DATE:

REQUIREMENTS ANALYSIS/SYSTEM LEVEL NAME: INSPECTOR:

Ij DATA BASE (SURVIVABILITY, USABILITY, INTEGRITY, EXPANDABILITY, CORRECTNESm

REIABUTY, MAITAINAB rITY)

I.* Is there a definitive statement of the requirements for maintaining data base integrity

under anomalous conditions? RE. 1(2) Y N"r

2.* Are there specific requirements for file/library accessibility from each node? DI.l(4) Y N

3.* Are there specific requirements for a virtual storage structure? VR.I(l) Y N

1.10 INSPECTOR'S COMMENTS

Make any general or specific comments that relate to the quality observed while applying th

checklist. *
:•-.'.

C-4.

4-'',S-

S% ~ % .4
.d

-%. %

METRIC WORKSHEET 2 SYSTEM- DATE:
DESIGN/SYSTEM, LEVEL NAME: INSPECTOR:

2.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, . VERIFIAILTY, FLExIBILITY, REUSABIL.

EXPANDABILITY, SURVIVABILITY, PORTABILITY, INTEROPERABILITY, INTEGRITY, USABILITY)

I.* hs an organization of the system provided which identifies all functions and functional

interfaces in the system? DI.l(1) Y N
2. Is a hierarchy of system identifying all modules in the system provided? SLIM(1 Y N

" . -

3. Are there no duplicate functions? 51. 1(2) Y N
4.* Is an organization of the data base provided which identifies all functional groupings

of data and data flow within the system? DI.I(2) Y N

3.' Are there provisions for selecting alternate processing capabilities? DI.I(5) Y N . .

6.' Are critical system functions distributed over redundant elements or nodes? DI. 1(6) Y N
7.* Does the distribution of control functions ensure network operation/integrity under ano-%

malous conditions? DIAl(7 Y-N
I.' Are logical structure and function separated in the design? DIMlS) YIN
9.* Are physical structure and function separated in the design? DIAN() YIN

10.' Number of nodes that can be removed and still have each node able to communicate with
each remaining node; 13I.100)

II1.* Do processes and functions have loose coupling? M0.30l) Y N
12.* What is the cohesion value of processes and functions? MO.3(2)
13.* Can each user utilize the system as though it were dedicated to that user? VR.1(4)

l#.* Is the user presented with a complete logical system without regard to physical topology?
VR.I(5) J

13.' Do module descriptions include identification of module interfaces? 51.1(10) Y N

2.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

3. Is concurrent processing centrally controlled? AM.l1(1) Y N
&'Is parallel processing centrally controlled? AM.1(4) Y N

4%3.. How many error conditions are reported by the system? AM.l(2)

% 'New,"=Modified

C-.4

4%%

METRK ~ ..KSEE 2 SYSTEM.4 DATE -....

-AX& - 7h - * -

.-.o

METRIC WORKSKEET 2 SYSTEM: DATE:
DESIGN/SYSTEM LEVEL NAME: INSPECTOR:

6. How many of those errors are automatically fixed or bypassed and processing continues?
AM.l(2)

7. How many, require operator intervention? AM.I(2)

3. Are there provisions for recovery from hardware faults? AM.A(2)
9. Are there provisions for recovery from device errors? AM.3(2)
lO.* Are there provisions for recovery from communication errors? AM.6(2)
I I.* Are there provisions for system recovery from node or communication failures? AM.7(2) Y N

2.A CHANGEABXY (FLEXIBULITY, REUSANLITY, EXPANDABuITY)

I.* Percent of memory capacity uncommitted. AG.l(2)

2.* Percent of auxiliary storage capacity uncommitted. AG.I(3)
3.* Percent of speed capacity uncommitted. AG.2(3)

. Spare I/O channel capacity. AG.3(I)

5*. Spare communication channel capacity. AG.J(2)
6.* Are processors, communication links, memory devices, and peripherals compatible

(of a common vendor or model)? AG.AI) Y N
7.* Does documentation reveal performance/price of software/system for enhancement trades?

AGAW2 Y N
8.* Do specifications identify new technology tradeoff areas for software? AG.#(3) Y N
9.* Do software specifications include requirements for the criteria of the quality factor

expandabilty. AGA() YIN
10. Number of modules. GE.I(i)
I. Based on hierarchy or a call/called matrix, how many modules are called by more than

one module? GE.I() -'

2.7 SYSTEM 4iTERFACES ONTEROPERADW1LY, SURVlYASIJTY)

10.* Is configuration of communication links such that failure of one node/link will not
disable communication among other nodes? RE.I(I) YN

Il.* Can node rejoin the network when it has been recovered? RE.I() Y N
12.* Is data replicated at two or more distinct nodes? RE.() YN

C-6

V°

.....

. .

0
,,.%- Z I.. ?1 -0..0-.-. ,- ,- . ,-..,.,- ,. - . , . , , , , -. ,,, "

,',,,'.. ,..,.....,.,,,.... ,. ,, . .: .'. .,.. ... ' , ,. '., ." .L,4,,." %. 6

14. Esiae nube oflnsontraecd. .UA

...-

".",METRIC WORKSHEET 2 SYSTEM: DATE: -.

".DESIGN/SYSTEM LEVE.L NAME: INSPE CTOR:..,'

13.' Are processes and functions separated as logical '"wholes" to minimize interface complex- .--
Sity? AU.1(l) Y N •.

l#.' Estimated number of lines of interface code. AU.l(2) ...

15.* Estimated number of interface modules. AU.l(3)

16.* Estimated time engaged in communication. AU.l(4).

17.* Does each CPU/system have a separate power source? AU.2(l) Y N

18.* Does each scheduling unit test its own operation, communication links, memories, and
• peripherals? AU.2(2) Y N "%

19.* Does the software system include a word-processing capability? AU.2(3) Y N

2. DATA BASE (RELIABILITY, MAINTAINABITY, VERIFABILITY, FLEXIBILITY, REUSABILIM

EXPANDABELITY, USABLIT, INTEGRITY, SURVIVABILIT, CORRECTNESS)
!,',...

I. Number of unique data items in data base SI.1(6) -

". 2. Number of preset data items 5.l(6).

3. Number of major segments (files) in data base 51.1(7)

4.* Is the data base structured so that at least one copy of a file/library resides at a node

* ~ which is accessible to al other nodes? DI.() N

,.* Is the data base structured so that users need not care about changes in the actual

storage structure of data? VR.1(2) Y N

6.* Are there provisions for maintaining data base integrity under anomalous conditions? RE.1(3) Y N

7.* Can users manipulate data as if it were not replicated elsewhere in the system? VR.1(3) Y N

2.11 INSPECTOR'S COMMENTS

Make any general or specific comments about the quality observed while applying this checklist.

a..,.

-Or-

C- 7 "-

\, ,.. h% , . .4 -,,-- * ,, ~ *. * ~.. - p. .. .4- . •. .4 ., . . .4

%"

.2

vS...>.

METRIC WORKSHEET 3 SYSTEM NAME: DATE:

DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR:

3.1 STRUCTURE (RELIABILITY, MAINTAINABILITY, VERIFIABILITY, FLEXIBILITY, REUSABILITY,

EXPANDABILITY, CORRECTNESS, PORTABILITY, INTEROPERABILITY, SURVIVABILITY)

1.* Is an organization of the system provided which identifies all modules and module inter-

faces? DI.l(l) Y N
2.* Is an organization of the data base provided which identifies all data base modules and

module interfaces? DI. 1(2) Y N

3. How many Decision Points are there? S1.3

4. How many subdecision Points are there? S1.3

5. How many conditional branches are there? 513

6. How many unconditional branches are there? SI.3

7. Is the module dependent on the source of the input or the destination of the output? SI.M(3) Y N

9. Is the module dependent on knowledge of prior processing SI.M(3) YIN

9. Number of entrances into modules SI. 1")

10. Number of exits from module SIAM(~
11.* Does the module description include input, output, processing, and limitations? SL.I() Y N

12.* Is code written according to a programming standard? SI.4(17) Y N

13.* Are macros and subroutines used to avoid repeated and redundant code? SI.4(18) Y N

14.* Number of input parameters. SP.l(1)

15.* Number of output values used. SP.1(2)

16.* Number of output parameters. SP.1(2)

17.* Can the same function not be accomplished by multiple variant forms? SP.1(3) Y N

% I8.* Does each function and module have loose coupling? MO.3(I) Y N19.* What is the cohesion value of each function and module? MO.3(2)

20.* Do module descriptions include identification of module interfaces? SI.I(10) Y N

3.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

I . When an error condition is detected, is it passed to calling module? AM.(3) ' N

5., 3. Are values of inputs range tested? AM.2(2) YN

4. Are conflicting requests and illegal combinations identified and checked? AM.2(3) Y N

.'' * =New, **=Modified

C-8

5%%

...................................-.. .

• "s % %~.... -.. '.".......... ""-" "'."..""-.*.-". '...%,"-,.-.'..'-'-.. .'.'.'
-
.-..-.. ".....'

p~e " 'L- ". ." "-' -, -'- -" "'" " " "'" -'' "- ' .' ." .-- " " -' '-' '-

W W , : L .- ' : - .7 - V ,' --- ' -. -. .-i b "- ". . - ..- , - .
' '
-.. 1

°-J

MTICORKSHEET 3 SYSTE NAMEDA :

DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR:
I-,4

5. Is there a check to see if all necessary data is available before processing begins? AM.2(5) Y N
6. Is all input checked, reporting all errors, before processing begins? AM.2(#) Y N
7. Are loop and multiple transfer index parameters range tested before use? AM.3(2) Y N

8. Are subscripts range tested before use? AM.3(3) Y N
9. Are outputs checked for reasonableness before processing continues? AM.3() Y N
10.* Are checksums computed and transmitted with all messages? AM.6(3) Y N -_

II.* Are checksums computed and compared upon message reception? AM.6(4) Y N
12.* Are the number of transmission retries limited? AM.65) Y N
I3.* Are adjacent nodes checked periodically for operational status? AM.7(3) Y N

14.* Are there alternate strategies for message routing? AM.7(4) Y N

3.5 REFERENCES (MAINTAINABILITY, FLEXIBILITY, VERIFIABILITY, PORTABILITY, REUSABIL-

ITY, INTEROPERABILITY, EXPANDABILITY, SURVIVABILITY)

5. Number of calling sequence parameters MO.2(3)
6. How many calling sequence parameters are control variables? MO.2(3)
7. Is input passed as calling sequence parameters MO.2(4) Y N

8. Is output passed back to calling module? MO.2(5) Y N
9. Is control returned to calling module? MO.2(6) Y N
10. Is temporary storage shared with other modules? MO.2(7) Y N

3.A CHANGEABILITY (FLEXIBILITY, REUSABILITY, EXPANDABILITY)
'p"

1. Is logical processing independent of storage specification? AG.l(l) Y"

2.* Percent of memory allocation uncommitted. AG.1(2)

3. Are accuracy, convergence, or timing attributes and limitations parametric? AG.2(I) Y N
4. Is module table driven? AG.2(2) YIN
3.* Percent of cycle time allocation uncommitted. AG.2(3) %

6.* I/O channel time allocation uncommitted. AG.3(l)
7.* Communication channel time allocation uncommitted. AG.3(2)

8. Does the module not mix input, output and processing functions in same module? GE.2(I) V.
9. Number of machine dependent functions performed? GE.2(2)

L.,

W1..

z .4

a" -- . ,... .-.-

*' . - - .- -..... ,

-. a - a* . . ' a - . *, • ° - . -. o . o. . **. .

METRIC WORKSHEET 3 SYSTEM NAMEs DATE:

DESIGN/MODULE LEVEL MODULE NAME: INSPECTOR:
.cdY

10. Is processing not data volume limited? GE.23) Y N
-II. Is processing not data value limited? GE.2(#) Y N-'-

3.7 SYSTEM INTERFACES (SURVIVABILITY)
°--.

I.* Estimated lines of interface code. AU.1(2)
2.* Estimated lines of source code. AU.1(2)
3.* Estimated numoer of interface modules. AU.(3),

4.* Estimated time engaged in communication. AU.l(4)

MO INSPECTOR'S (OMUENTS

Make any specific or general comments about the quality observed while applying this checklist.

C-1

Z• % % V

% > \ - .

-7 wa-- W7...

.DO.

'.-...

METRIC WORKSHEET 4 SYSTEM NAME: DATE:
SOURCE CODE/MODULE LEVEL MODULE NAME: INSPECTOR:

4. STRUCTURE (RELIABOITY, MAINTAINABLI, VERIFIILITY, FLEXIBILITY, PORTABILIT-

REUSABILITY, INT OPERABT, EXPANDABILITY, SURVIVABLITY)"

1. Number of lines of code MO.2(2)

2. Number of lines excluding comments SI.4(2)

4. Number of declarative statements S1.(9).
5. Number of data manipulation statements SI.A(9)
6. Number of statement labels (Do not count format statements SI.4(6)
7. Number of entrances into module S.I(5)"
.. Number of exits from module SI.1(5)
9. Maximum nesting level SI.4(7)

10. Number of decision points (IF, WHILE, REPEAT, DO, CASE) S.3
1I. Number of sub-decision points. S.3.

12. Number of conditional branches (computed go to) S1.4(8)
" 13. Number of unconditional branches (GOTO, ESCAPE) SI. 1()

14. Number of loops (WHILE, DO) S1.4(3)
15. Number of loops with jumps out of loop SI.4(3)

16. Number of loop indices that are modified SI.()
17. Number of constructs that perform module modifications (SWITCH, ALTER) S.4(5) '.."

, 18. Number of negative or complicated compound boolean expressions SI.4(2) e
19. Is a structured language used S1.2 Y N
20. Is flow top to bottom (are there no backward branching GOTOs) SI.(I) Y N
21.* Is code written according to a programming standard? S1.4(17) Y N
22.* Are macros and subroutines used to avoid repeated and redundant code? S1.4(18) Y N

4.2 TOLERANCE (RELIABILITY, SURVIVABILITY)

1. How many loop and multiple transfer index parameters are not range tested before use?
AM.3(2)

2. Are subscript values range tested before use? AM.3(3) YN

3. When an error condition occurs, is it passed to the calling module? AM.1(3)

~i1.o'

C-11

%%

c-il
.4

METRIC WORKSHEET 4 SYSTEM NAME: DATE:

SOURCE CODE/MODULE LEVEL MODULE NAME: INSPECTORt

4. Are the results of a computation checked before outputting or before processing continues?

AM.X() Y N

_.* Are all data available prior to processing? AM.2(0) Y N

4.J RE ECS (MAINTAABUMTY, VEROWAML TY, PLEXnIDIY, PORTABLITY REUSA1LT J.

INT- I OERADLITY, EXPANDABnLITY, SURVIVABILITY)

1. Number of calls to other modules MO.2(l)

3. Number of calling sequence parameters MO.2(3) r

,'4 *. How many elements in calling sequences are not parameters? MO.2(3) .4.

5. How many of the calling parameters (input) are control variables? MO.2(3)

6. How many parameters passed to or from other modules are not defined in this module?

MO.2(3)

7. Is input data passed as parameter? MO.2(4) YN

8. Is output data passed back to calling module? MO.2(0) YN

9. Is control returned to calling module? MO.2(6) YN

4 CHAHGEA81LETY (FLEXlBLITY, REUSABILITY, EXPANDADIUITY,

I. Is module table driven? AG.2(2) Y N

24 2. Are there any limits to data values that can be processed? GE.2(4) Y N

' 3. Are there any limits to amounts of data that can be processed? GE.2(3) Y N

4. Are accuracy, convergence and timing attributes parametric? AG.2(I) Y N
5.* Amount of memory used. AG.I(2) -

7 iNTFIr/OUTFUT (RELIABILITY, PORTABILITY, REUSAWBITY, SURViWA LITY)

4. Are inputs range-tested (for inputs via calling sequences, global data, and input statements)

AM.2(2) Y N

5. Are possible conflicts or illegal combinations in inputs checked? AM.2(3) Y N

6. Is there a check to determine if all data is available prior to processing? AM.2(0) Y N

°" *Z NeW, 2* Modified

* -

i%
.9,

,i , C-12".,

. , -q4 . '. ,.,-.. ,. ..**.,'. . , % ,. , .,". .. . - I,, , . . .

. S,

METRIC WORKSHEET L SYSTEM NAME: DATE:
SOURCE COlE/MODULE LEVEL MODULE NAME: INSPECTOR:

7. is all input checked, reporting ali errors, before processing begins? AM.2(4) N
L* Number of lInes of interface code. AU.1(2)
9.* Number of modules with interface code. AU.I(3) .',

4-9 DATA 4CORRECTASS, RELABILITY, MAINTABIABLITY, VERIFIABILITY, EFFICIE -N

FLEXDILUTY, REUSABLTY, EXPAm ISIT).

I. Number of local variables SI.4(10)
2. Number of global variables Sl.4(l0)
3. Number of global variables renamed EF.(3)
6. Number of executable statements. SI.4(l 1)

4.11 DYNAMIC MEASUREMENTS (EFFICIENCY, RELIABILITY, FLEXIBILITY, EXPANDABILITf
' ~~SU nV l ILITY) . ,

2. During module/development testing, what was run time? AG.2(3)

6.* Amount of 1/0 channel capacity used. AG.3()
7.0 Amount of communication channel capacity used. AG.3(2)

3. e Time engaged in communication. AU.I(4)

" 4.12 SPECTOM COMMENTS

Make any general or specific comments that relate to the quality observed while applying this checklist.

C-13.

S..

* .

".t,,

c-•I..

,-,,, -. * , 5,.. ,,,,5. ,r ,, ._, , - **... *.. *'*,, ... '..'j ,- ,, . °. . -
*,.q.,, ** . 'Si .. , ,. 'N., ' . ''*. 4."•. ',- , .. *-' ,.-, .. •. --

APPENDIX D
RATING QUESTIONNAIRES

At.

aD-

PR03ECT_____ ___

SURVIVABILITfY

i

On a scale of I to 10 (ten highest) please rate the software for this system with respect to the following
,j ~attributes. :.. ,

ATTRIBUTE DESCRIPTION RATING

o Anomaly Management o Those attributes of the software
which provide for continuity of
operations under and recovery from
non-nominal conditions.

o Automony o Those attributes of the software "___".
which determine its dependency on
interfaces.

o Distributedness o Those attributes of the software
which determine the degree to which

'9, software functions are geographically
or logically separated within the
system.

o Modularity o Those attributes of the software "'_.".
which provide a structure of highly
cohesive modules with optimum coup-
ling.

o Reconfigurability o Those attributes of the software
which provide for continuity of
system operation when one or more .*t.
processors, storage units, or com-
munications links fail

o Survivability o Probability that software will ,'._"
continue to perform or support
critical functions when a portion
of the system is inoperable.

o Augmentability o Those attributes of the software which

provide for expansion of capability for
functions and data.

S.0

o Generality o Those attributes of the software which

provide breadth to the functions per-
formed with respect to the application.

-D-2

, A6 Dy L% U%

PRO3ECT _ .__•

EXPANDABILITY
a...

On a scale of I to 10 (ten highest) please rate the software for this system with respect to the following

attributes.

ATTREBUTE DESCRIPTION RATING

o Modularity o Those attributes of the software which "._-_
provide a structure of highly cohesive
modules with optimum coupling.

o Simplicity o Those attributes of the software which"-__"_-
provide for the definition and implemen-
tation of functions in the most non-
complex and understandable manner.

o Specificity o Those attributes of the software which _""

provide singularity in the definition
and implementation of functions.

o Virtuality o Those attributes of the software which __

present a system that does not require
user knowledge of the physical, logical,
or topological characteristics (e.g.,
number of processors/disks, storage lo-
cations).

a..-

o Expandabiity o Ease with which the software capability ...-.
or performance can be increased by en-
hancing current functions or adding new
functions/data.

Olese estimate the following in terms of manmonths of effort:

" Effort to expand the software for this ."._
application.

" Equivalent effort to do the same task from
scratch for this application.

4.

D-3

IN.

K I: : ._., ,,". . ;, . --.?. - -.'-- --. ..-'-...;.'-.-",...''. : .--.:-.-'----.-.-. ' ---.-..L?

MISSION
Of

Rom Air Development Center
RAV p&MY and executeA)teA Www-, devetopment, te.C and
6etee-ted acqui1Ation pkogram in 6WWAt o6 comwid, Contoo
CouwiniAcomr and InteL~genc.e (C7)acvt.~ TeCelnZCA
and engineening huppo'Lt wUhin ate"~ 06 techntzcat competence

potovided .to ESP? P'kogAAM OgdiCeA (PW6 and 0tWL ESP
e.LementA. The p~zAneipaL technicat mti46on va,6eu .
WmncW2tnA, £eatorraofltix guwidance and contut, 6a&-
vektante 06 gqund and ae/wapae-e objec.4t, intetgnce da~ta
cotteeton and handt.nq, injo/cmation 6y,6tem .technoogy,,
£ono,6pke~a~ pJL0pagat4 on, 6otid 6tate 6~enameA, acmcJOikve
phg6iAs and etemz.t~omiw uuabi2.i, main nabZit and
cornria~b~ii.

DTI1

